10. [5 points] Suppose $g(x)$ is a differentiable function defined for all real numbers that satisfies the following properties:

- $g(x)$ has exactly two critical points.
- $\lim _{x \rightarrow-\infty} g(x)=3$.
- $g(x)$ has a local maximum at $x=0$ and $g(0)=4$.
- $\lim _{x \rightarrow \infty} g^{\prime}(x)=1$.
- $g(x)$ has a local minimum at $x=2$ and $g(2)=1$.

Circle all of the statements below that must be true about the function g or circle NONE OF THESE if none of the statements must be true.
i. The function $g(x)$ is increasing on the entire interval $x<0$.
ii. The function $g(x)$ is increasing on the entire interval $0<x<2$.
iii. The function $g(x)$ is increasing on the entire interval $x>2$.
iv. On its domain $(-\infty, \infty)$, the function $g(x)$ attains its global maximum at $x=0$.
v. On its domain $(-\infty, \infty)$, the function $g(x)$ attains its global minimum at $x=2$.
vi. On its domain $(-\infty, \infty)$, the function $g(x)$ does not have a global maximum value.
vii. On its domain $(-\infty, \infty)$, the function $g(x)$ does not have a global minimum value.
viii. NONE OF THESE

