2. [13 points] A function $g(x)$ and its derivative are given by

$$
g(x)=\frac{x^{3}+34 x^{2}+732 x+5400}{(x+30)^{4}} \quad \text { and } \quad g^{\prime}(x)=\frac{-(x-6)^{2}(x-10)}{(x+30)^{5}}
$$

a. [8 points] Find all critical points of $g(x)$ and all values of x at which $g(x)$ has a local extremum. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all local extrema.

Solution: To find critical points we (i) solve for x in the equation $g^{\prime}(x)=0$ and (ii) look for points in the domain of the function where the derivative is undefined. The critical points occur at $x=6$ and $x=10$. Note that $x=-30$ is not a critical point since it is not in the domain of the function.

To test whether each of these critical points is a local extremum, we consider the sign of $g^{\prime}(x)$ on the intervals on each side of the critical points and then apply the First Derivative Test. Note that $(x-6)^{2}$ is positive for all $x \neq 6$, and $(x+30)^{5}$ is positive for all $x>-30$. Finally, note that $x-10$ is positive for $x>10$ and negative for $x<10$. We summarize the resulting signs of the derivative in the table below.

Interval	$-30<x<6$	$6<x<10$	$x>10$
Sign of $g^{\prime}(x)$	$\frac{-\cdot+\cdot-}{+}=+$	$\frac{-\cdot+\cdot-}{+}=+$	$\frac{-\cdot+\cdot+}{+}=-$

We see that $g(x)$ does not have a local extremum at $x=6$ and that, by the First Derivative Test, $g(x)$ has a local maximum at $x=10$.
(For each answer blank below, write NONE in the answer blank if appropriate.)

Answer: critical point(s) at $x=$ 6,10

Answer: local min(s) at $x=$
NONE

Answer: local max(es) at $x=$
b. [5 points] Find the values of x that minimize and maximize $g(x)$ on the interval $[0, \infty)$. Use calculus to find your answers, and be sure to show enough evidence that the points you find are indeed global extrema.
Solution: The only local extremum is the local maximum at $x=10$ so since g is continuous on the interval $[0, \infty)$, this must also be the global max. (Alternatively, note that from part (a), we know that $g(x)$ is increasing for $0 \leq x \leq 10$ and decreasing for $x \geq 10$, so $g(10)$ must be the global maximum value of $g(x)$ on the interval $[0, \infty)$.) To check for a global min we need to consider the ends of the interval. Now, $g(0)=\frac{1}{150}$ and $\lim _{x \rightarrow \infty} g(x)=0$, which is less than $\frac{1}{150}$. This implies that there is no global minimum of
$g(x)$ on the interval $[0, \infty)$.
(For each answer blank below, write NONE in the answer blank if appropriate.)

Answer: global min(s) at $x=$

Answer: global max(es) at $x=$

