3. [8 points] Suppose $f(x)$ is a function that is continuous on the interval $[-2,2]$. The graph of $f^{\prime}(x)$ on the interval $[-2,2]$ is given below.

a. [3 points] Let $L(x)$ be the local linearization of $f(x)$ at $x=-1$. Using the fact that $f(-1)=4$, write a formula for $L(x)$.
Solution: $\quad f(-1)=4$ and $f^{\prime}(-1)=3$, so $L(x)=4+3(x-(-1))=4+3(x+1)$.

$$
\text { Answer: } \quad L(x)=\frac{4+3(x+1) \quad \text { or } \quad 3 x+7}{}
$$

b. [2 points] Use your formula for $L(x)$ to approximate $f(-0.5)$.

Solution: Since -0.5 is close to -1 we have

$$
f(-0.5) \approx L(-0.5)=4+3(-0.5+1)=43(0.5)=5.5
$$

$$
\text { Answer: } \quad f(-0.5) \approx
$$

c. [3 points] Is your answer from part (b) an overestimate or an underestimate of the actual value of $f(-0.5)$? Justify your answer.
Circle one: overestimate underestimate CANNOT BE DETERMINED

Justification:

Solution: The function $f^{\prime}(x)$ is increasing between -2 and 0 so $f(x)$ is concave up over this interval. Therefore the tangent line to the graph of $f(x)$ at $x=-1$ lies below the graph of $f(x)$ between $x=-2$ and $x=0$. In particular, the local linearization $L(x)$ of $f(x)$ at $x=-1$ gives an underestimate of f on that interval.

