7. [10 points] To aid in Elphaba's escape, Walt has concocted a supplement that will make her stronger and more agile. The concentration of the supplement in Elphaba's system, in $\mathrm{mg} / \mathrm{ml}$, t minutes after it is administered is given by the following formula:

$$
T(t)= \begin{cases}a t^{3} & 0 \leq t \leq 5 \\ b(t-6)^{2}+10 & 5<t \leq 7\end{cases}
$$

where a and b are constants.
a. [7 points] Given that $T(t)$ is differentiable, find a and b. Give your answers in exact form.

Solution: Because the two pieces of the function are polynomials, the only point at which the function could fail to be differentiable is at $t=5$. In order to be differentiable at $t=5, T(t)$ must be continuous there. So $\lim _{t \rightarrow 5^{-}} T(t)=\lim _{t \rightarrow 5^{+}} T(t)$. Now,

$$
\lim _{t \rightarrow 5^{-}} T(t)=\lim _{t \rightarrow 5^{-}} a t^{3}=a\left(5^{3}\right)=125 a
$$

and

$$
\lim _{t \rightarrow 5^{+}} T(t)=\lim _{t \rightarrow 5^{+}} b(t-6)^{2}+10=b(5-6)^{2}+10=b+10 .
$$

So we must have $125 a=b+10$.
In order for $T(t)$ to be differentiable at $t=5$, the slope of the tangent line to the graph of $y=a t^{3}$ and $t=5$ must be the same as the slope of the tangent line to the graph of $y=b(t-6)^{2}+10$ at $t=5$. The slope of the tangent line to the graph of $y=a t^{3}$ at $t=5$ is $3 a t^{2}$ evaluated at $t=5$, which is $75 a$. The slope of the tangent line to the graph of $y=b(t-6)^{2}+10$ at $t=5$ is $2 b(t-6)$ evaluated at $t=5$, which is $-2 b$. Hence $75 a=-2 b$.

So in order for $T(t)$ to be differentiable, we must have $125 a=b+10$ and $75 a=-2 b$. Solving these two equations simultaneously we find $a=\frac{4}{65}$ and $b=-\frac{30}{13}$.

Answer: $a=\frac{4}{65} \quad$ and $b=\xrightarrow{-\frac{30}{13}}$
b. [3 points] Using the values of a and b you found in part (a), give a formula for the tangent line to the graph of $y=T(t)$ at $t=5$.

Solution: $\quad T(5)=a\left(5^{3}\right)=\frac{4}{65}(125)=\frac{100}{13}$ and $T^{\prime}(5)=a\left(3\left(5^{2}\right)\right)=\frac{4}{65}(75)=\frac{60}{13}$. So a formula for the tangent line to the graph of $y=T(t)$ at $t=5$ is $y=\frac{100}{13}+\frac{60}{13}(t-5)$.

Answer: $y=\Longrightarrow \frac{100}{13}+\frac{60}{13}(t-5) \quad$ or $\quad \frac{60}{13} t-\frac{200}{13}$

