5. [15 points] Suppose $g(x)$ is a differentiable function defined for all real numbers x. The derivative and second derivative of $g(x)$ are given by

$$
g^{\prime}(x)=x^{2}(x+4)(x+2)^{1 / 3} \quad \text { and } \quad g^{\prime \prime}(x)=\frac{2 x(x+3)(5 x+8)}{3(x+2)^{2 / 3}} .
$$

a. [2 points] Find the x-coordinates of all critical points of $g(x)$.

If there are none, write "NONE".

Answer: Critical point(s) of $g(x)$ at $x=$
b. [2 points] Find the x-coordinates of all critical points of $g^{\prime}(x)$.

If there are none, write "NONE".

Answer: Critical point(s) of $g^{\prime}(x)$ at $x=$ \qquad
c. [6 points] Find the x-coordinates of all local maxima and local minima of $g(x)$.

If there are none of a particular type, write "NONE". Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all local extrema.

Answer: Local max(es) at $x=$ \qquad and Local min(s) at $x=$ \qquad
d. [5 points] Find the x-coordinates of all inflection points of $g(x)$.

If there are none, write "NONE". Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all inflection points.

Answer: Inflection point(s) at $x=$ \qquad

