Suppose \(H \) is a differentiable function such that \(H'(w) \) is also differentiable for \(0 < w < 10 \). Several values of \(H(w) \) and of its first and second derivatives are given in the table on the right.

<table>
<thead>
<tr>
<th>(w)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H(w))</td>
<td>6.3</td>
<td>5.4</td>
<td>5.2</td>
<td>4.8</td>
<td>0.7</td>
</tr>
<tr>
<td>(H'(w))</td>
<td>−1.5</td>
<td>−0.4</td>
<td>−0.1</td>
<td>−0.6</td>
<td>−2.1</td>
</tr>
<tr>
<td>(H''(w))</td>
<td>1.6</td>
<td>0.9</td>
<td>0</td>
<td>−0.8</td>
<td>−0.4</td>
</tr>
</tbody>
</table>

Assume that between each pair of consecutive values of \(w \) shown in the table, each of \(H'(w) \) and \(H''(w) \) is either always strictly decreasing or always strictly increasing.

a. [3 points] Use an appropriate linear approximation to estimate \(H(5.2) \).

\[
\text{Answer: } H(5.2) \approx \quad \text{[Value]} \]

b. [5 points] Let \(J(w) \) be the local linearization of \(H \) near \(w = 2 \), and let \(K(w) \) be the local linearization of \(H \) near \(w = 3 \). Which of the following statements must be true? Circle all of the statements that must be true, or circle "NONE OF THESE".

- \(J(2) > H(2) \)
- \(J(2) = H(2) \)
- \(J(2) < H(2) \)
- \(J'(2) > H'(2) \)
- \(J'(2) = H'(2) \)
- \(J'(2) < H'(2) \)
- \(K(3.5) > H(3.5) \)
- \(K(3.5) = H(3.5) \)
- \(K(3.5) < H(3.5) \)
- \(K'(3.5) > H'(3.5) \)
- \(K'(3.5) = H'(3.5) \)
- \(K'(3.5) < H'(3.5) \)
- NONE OF THESE

c. [3 points] Use the quadratic approximation of \(H(w) \) at \(w = 1 \) to estimate \(H(0.9) \).

(Recall that a formula for the quadratic approximation \(Q(x) \) of a function \(f(x) \) at \(x = a \) is \(Q(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 \).

\[
\text{Answer: } H(0.9) \approx \quad \text{[Value]} \]

d. [3 points] Consider the function \(N \) defined by \(N(w) = H(2w^2 - 10) \), and let \(L(w) \) be the local linearization of \(N(w) \) at \(w = 3 \). Find a formula for \(L(w) \). Your answer should not include the function names \(N \) or \(H \).

\[
\text{Answer: } L(w) = \quad \text{[Value]} \]