8. [14 points]

Suppose H is a differentiable function such that H'(w) is also differentiable for 0 < w < 10. Several values of H(w)and of its first and second derivatives are given in the table on the right.

w	1	2	3	5	8
H(w)	6.3	5.4	5.2	4.8	0.7
H'(w)	-1.5	-0.4	-0.1	-0.6	-2.1
H''(w)	1.6	0.9	0	-0.8	-0.4

Assume that between each pair of consecutive values of w shown in the table, each of H'(w) and H''(w) is either always strictly decreasing or always strictly increasing. Remember to show your work carefully.

a. [3 points] Use an appropriate linear approximation to estimate H(5.2).

Answer: $H(5.2) \approx$ _____

b. [5 points] Let J(w) be the local linearization of H near w = 2, and let K(w) be the local linearization of H near w = 3. Which of the following statements <u>must</u> be true? Circle <u>all</u> of the statements that must be true, or circle "NONE OF THESE".

J(2.5) > H(2.5)	K(3.5) > H(3.5)
J(2.5) = H(2.5)	K(3.5) = H(3.5)
J(2.5) < H(2.5)	K(3.5) < H(3.5)
K(2.5) > H(2.5)	K'(3.5) > H'(3.5)
K(2.5) = H(2.5)	K'(3.5) = H'(3.5)
	J(2.5) = H(2.5) J(2.5) < H(2.5) K(2.5) > H(2.5)

NONE OF THESE

c. [3 points] Use the quadratic approximation of H(w) at w = 1 to estimate H(0.9). (Recall that a formula for the quadratic approximation Q(x) of a function f(x) at x = a is $Q(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$.)

Answer: $H(0.9) \approx$ _____

d. [3 points] Consider the function N defined by $N(w) = H(2w^2 - 10)$, and let L(w) be the local linearization of N(w) at w = 3. Find a formula for L(w). Your answer should <u>not</u> include the function names N or H.