8. [14 points]

Suppose H is a differentiable function such that $H^{\prime}(w)$ is also differentiable for $0<w<10$. Several values of $H(w)$ and of its first and second derivatives are given in the table on the right.

w	1	2	3	5	8
$H(w)$	6.3	5.4	5.2	4.8	0.7
$H^{\prime}(w)$	-1.5	-0.4	-0.1	-0.6	-2.1
$H^{\prime \prime}(w)$	1.6	0.9	0	-0.8	-0.4

Assume that between each pair of consecutive values of w shown in the table, each of $H^{\prime}(w)$ and $H^{\prime \prime}(w)$ is either always strictly decreasing or always strictly increasing. Remember to show your work carefully.
a. [3 points] Use an appropriate linear approximation to estimate $H(5.2)$.

Answer: $H(5.2) \approx$ \qquad
b. [5 points] Let $J(w)$ be the local linearization of H near $w=2$, and let $K(w)$ be the local linearization of H near $w=3$. Which of the following statements must be true? Circle all of the statements that must be true, or circle "NONE OF THESE".

$$
\begin{array}{lll}
J(2)>H(2) & J(2.5)>H(2.5) & K(3.5)>H(3.5) \\
J(2)=H(2) & J(2.5)=H(2.5) & K(3.5)=H(3.5) \\
J(2)<H(2) & J(2.5)<H(2.5) & K(3.5)<H(3.5) \\
& K(2.5)>H(2.5) & K^{\prime}(3.5)>H^{\prime}(3.5) \\
J^{\prime}(2)>H^{\prime}(2) & K(2.5)=H(2.5) & K^{\prime}(3.5)=H^{\prime}(3.5) \\
J^{\prime}(2)=H^{\prime}(2) & K(2.5)<H(2.5) & K^{\prime}(3.5)<H^{\prime}(3.5) \\
J^{\prime}(2)<H^{\prime}(2) &
\end{array}
$$

NONE OF THESE
c. [3 points] Use the quadratic approximation of $H(w)$ at $w=1$ to estimate $H(0.9)$.
(Recall that a formula for the quadratic approximation $Q(x)$ of a function $f(x)$ at $x=a$ is $Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}$.)

Answer: $H(0.9) \approx$ \qquad
d. [3 points] Consider the function N defined by $N(w)=H\left(2 w^{2}-10\right)$, and let $L(w)$ be the local linearization of $N(w)$ at $w=3$. Find a formula for $L(w)$. Your answer should not include the function names N or H.

Answer: $\quad L(w)=$ \qquad

