1. [7 points] Gertrude wants to enclose a rectangular region in her backyard. She wants to use high fencing (thick line), which costs $\$ 200$ per foot, for one side of the rectangle. For the remaining three sides, she wants to use normal fencing (thin line), which costs $\$ 75$ per foot. Let $A(h)$ be the area (in square feet) of the region enclosed by the fence if h is the length (in feet) of the side with high fencing and Gertrude spends $\$ 3000$ on fencing for the project.

a. [4 points] Find a formula for $A(h)$.

Solution: Let ℓ be the other sidelength of the rectangle. Then, the total cost of the fencing is

$$
200 h+75(2 \ell+h)=275 h+150 \ell .
$$

If the total cost of fencing is $\$ 3000$, then

$$
\begin{aligned}
275 h+150 \ell & =3000 \\
150 \ell & =3000-275 h \\
\ell & =20-\frac{11}{6} h .
\end{aligned}
$$

Hence,

$$
A(h)=h \ell=20 h-\frac{11}{6} h^{2} .
$$

Answer: $A(h)=\square \quad 20 h-\frac{11}{6} h^{2}$
b. [3 points] In the context of this problem, what is the domain of $A(h)$?

Solution: Note that $h>0$, or else we would not have a rectangle. Note also that $\ell>0$ (where ℓ is the other sidelength).
So since $275 h+150 \ell=3000$, we have $275 h=3000-150 \ell<3000$, so $h<\frac{3000}{275}=\frac{120}{11} \approx$ 10.91. Hence, the domain of $A(h)$ is $0<h<\frac{120}{11}$.
(Note that in this situation, it would also be okay to include the endpoints 0 and 3000/275, which correspond to the degenerate cases of a rectangle of length or width 0 .)

Answer: Domain: The interval $\left(0, \frac{120}{11}\right)$ (or $\left.\left[0, \frac{120}{11}\right]\right)$

