10. [9 points] Consider the function h defined by $\quad h(x)= \begin{cases}A x^{4} & \text { if } x<2 \\ B x^{3}+80 \ln \left(\frac{x}{2}\right) & \text { if } x \geq 2\end{cases}$ where A and B are constants.
a. [6 points] Find values of A and B so that h is differentiable.

Remember to show your work clearly.
Solution: If h is differentiable, it must be continuous, so, in particular,

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} h(x) & =\lim _{x \rightarrow 2^{+}} h(x) \\
A(2)^{4} & =B(2)^{3}+80 \ln (2 / 2) \\
16 A & =8 B \\
2 A & =B .
\end{aligned}
$$

Note that $\frac{d}{d x}\left(A x^{4}\right)=4 A x^{3}$ and $\frac{d}{d x}\left(B x^{3}+80 \ln \left(\frac{x}{2}\right)\right)=3 B x^{2}+80\left(\frac{2}{x}\right)\left(\frac{1}{2}\right)=3 B x^{2}+\frac{80}{x}$. and that both $A x^{4}$ and $\left.B x^{3}+80 \ln \left(\frac{x}{2}\right)\right)$ are differentiable at $x=2$.
In order for $h(x)$ to be differentiable at $x=2, h^{\prime}(x)$ must exist at $x=2$. In particular,

$$
\begin{aligned}
\lim _{k \rightarrow 0^{-}} \frac{h(2+k)-h(2)}{k} & =\lim _{k \rightarrow 0^{+}} \frac{h(2+k)-h(2)}{k} \\
\left.\left(\frac{d}{d x}\left(A x^{4}\right)\right)\right|_{x=2} & =\left.\left(\frac{d}{d x}\left(B x^{3}+80 \ln \left(\frac{x}{2}\right)\right)\right)\right|_{x=2} \\
\left.\left(4 A x^{3}\right)\right|_{x=2} & \left.=\left.\left(3 B x^{2}+\frac{80}{x}\right)\right|_{x=2} \quad \text { (i.e. derivatives of the two pieces are equal at } x=2\right) \\
32 A & =12 B+40 .
\end{aligned}
$$

Since $B=2 A$, we therefore find that

$$
\begin{array}{r}
32 A=24 A+40 \\
8 A=40 \\
A=5
\end{array}
$$

and hence $B=2 A=2(5)=10$.
Answer: $A=\quad 5$
and $B=$ \qquad
b. [3 points] Using the values of A and B you found in part a., find the tangent line approximation for $h(x)$ near $x=1$.

Solution: First, notice that

$$
h(1)=5(1)^{4}=5
$$

and

$$
h^{\prime}(1)=4(5)(1)^{3}=20 .
$$

So the tangent line approximation for $h(x)$ near $x=1$ is $y=5+20(x-1)=20 x-15$.
Answer: The tangent line approximation is given by $y=\underline{5+20(x-1)(\text { or } 20 x-15)}$

