4. [10 points] Let \(h(x) \) be a twice differentiable function defined for all real numbers \(x \). (So \(h \) is differentiable and its derivative \(h' \) is also differentiable.) Some values of \(h'(x) \), the derivative of \(h \) are given in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-8)</th>
<th>(-6)</th>
<th>(-4)</th>
<th>(-2)</th>
<th>(0)</th>
<th>(2)</th>
<th>(4)</th>
<th>(6)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h'(x))</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>(-3)</td>
<td>(-5)</td>
<td>(-4)</td>
<td>0</td>
<td>(-2)</td>
<td>6</td>
</tr>
</tbody>
</table>

For each of the following, circle all the correct answers. Circle “NONE OF THESE” if none of the provided choices are correct.

a. [2 points] Circle all the intervals below in which \(h(x) \) must have a critical point.

\(-8 < x < -6\)
\(-6 < x < -2\)
\(-2 < x < 2\)
\(2 < x < 6\)
\(6 < x < 8\)

NONE OF THESE

b. [2 points] Circle all the intervals below in which \(h(x) \) must have a local extremum (i.e. a local maximum or a local minimum).

\(-8 < x < -6\)
\(-6 < x < -2\)
\(-2 < x < 2\)
\(2 < x < 6\)
\(6 < x < 8\)

NONE OF THESE

c. [2 points] Circle all the intervals below in which \(h(x) \) must have an inflection point.

\(-8 < x < -4\)
\(-4 < x < 0\)
\(0 < x < 4\)
\(2 < x < 6\)
\(4 < x < 8\)

NONE OF THESE

d. [2 points] Circle all the intervals below which must contain a number \(c \) such that \(h''(c) = 2 \).

\(-8 < x < -6\)
\(-4 < x < -2\)
\(-2 < x < 0\)
\(2 < x < 4\)
\(6 < x < 8\)

NONE OF THESE

e. [2 points] Suppose that \(h''(x) < 0 \) for \(x < -8 \), and \(h(-8) = 7 \). Circle all the numbers below which could equal the value of \(h(-10) \).

\(-2\)
\(-1\)
\(0\)
\(1\)
\(2\)

NONE OF THESE