4. [10 points] Let $h(x)$ be a twice differentiable function defined for all real numbers x. (So h is differentiable and its derivative h^{\prime} is also differentiable.)
Some values of $h^{\prime}(x)$, the derivative of h are given in the table below.

x	-8	-6	-4	-2	0	2	4	6	8
$h^{\prime}(x)$	3	7	0	-3	-5	-4	0	-2	6

For each of the following, circle all the correct answers.
Circle "none of these" if none of the provided choices are correct.
a. [2 points] Circle all the intervals below in which $h(x)$ must have a critical point.

$$
\begin{array}{lll}
-8<x<-6 & -6<x<-2 & -2<x<2 \\
\hline
\end{array}
$$

NONE OF THESE

b. [2 points] Circle all the intervals below in which $h(x) \underline{\text { must }}$ have a local extremum (i.e. a local maximum or a local minimum).

$$
-8<x<-6 \quad-6<x<-2 \quad-2<x<2 \quad 2<x<6 \quad 6<x<8
$$

NONE OF THESE

c. [2 points] Circle all the intervals below in which $h(x)$ must have an inflection point.

$$
\begin{array}{|lll|}
\hline-8<x<-4 & -4<x<0 & 0<x<4 \\
\hline
\end{array}
$$

NONE OF THESE

d. [2 points] Circle all the intervals below which must contain a number c such that $h^{\prime \prime}(c)=2$.

$$
\begin{array}{|llll}
-8<x<-6 & -4<x<-2 & -2<x<0 & 2<x<4
\end{array} 6<x<8
$$

NONE OF THESE
e. [2 points] Suppose that $h^{\prime \prime}(x)<0$ for $x<-8$, and $h(-8)=7$. Circle all the numbers below which could equal the value of $h(-10)$.
-2
-1
0
1
2

