5. [15 points] Suppose $g(x)$ is a differentiable function defined for all real numbers x. The derivative and second derivative of $g(x)$ are given by

$$
g^{\prime}(x)=x^{2}(x+4)(x+2)^{1 / 3} \quad \text { and } \quad g^{\prime \prime}(x)=\frac{2 x(x+3)(5 x+8)}{3(x+2)^{2 / 3}} .
$$

a. [2 points] Find the x-coordinates of all critical points of $g(x)$.

If there are none, write "NONE".
Answer: Critical point(s) of $g(x)$ at $x=\quad-4,-2,0$
b. [2 points] Find the x-coordinates of all critical points of $g^{\prime}(x)$.

If there are none, write "NONE".
Answer: Critical point(s) of $g^{\prime}(x)$ at $x=\quad-3,-2,-\frac{8}{5}, 0$
c. [6 points] Find the x-coordinates of all local maxima and local minima of $g(x)$.

If there are none of a particular type, write "NONE". Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all local extrema.
Solution: We know from part a. that the critical points of $g(x)$ are $-4,-2,0$. Notice that the Second Derivative Test is inconclusive, because $g^{\prime \prime}(-2)$ does not exist and $g^{\prime \prime}(0)=0$. So we must use the First Derivative Test. Notice that the factor x^{2} is always non-negative, $(x+4)$ is negative for $x<-4$ and positive for $x>-4$, and $(x+2)^{1 / 3}$ is negative for $x<-2$ and positive for $x>-2$. This gives us the resulting signs:

Interval	$x<-4$	$-4<x<-2$	$-2<x<0$	$x>0$
Sign of $g^{\prime}(x)$	$+\cdot-\cdot-=+$	$+\cdot+\cdot-=-$	$+\cdot+\cdot+=+$	$+\cdot+\cdot+=+$

So $g(x)$ has a local maximum at $x=-4$ and a local minimum at $x=-2$. There is neither a local maximum nor a local minimum at $x=0$.

Answer: Local max(es) at $x=\ldots \quad-4 \quad$ and $\quad \operatorname{Local} \min (\mathrm{s})$ at $x=\ldots-2$
d. [5 points] Find the x-coordinates of all inflection points of $f(x)$.

If there are none, write "NONE". Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all inflection points.

Solution: We know from part b. that $g^{\prime \prime}(x)$ is 0 or undefined (i.e., $g^{\prime}(x)$ has a critical point or is undefined) at $x=-3,-2,-\frac{8}{5}, 0$. To determine whether these are actually inflection points (where concavity changes), we must test the sign of the second derivative on either side of each point. Notice that the factor $2 x$ is negative for $x<0$ and positive for $x>0$, the factor $(x+3)$ is negative for $x<-3$ and positive for $x>-3$, the factor $(5 x+8)$ is negative for $x<-\frac{8}{5}$ and positive for $x>-\frac{8}{5}$, and the factor $(x+2)^{-2 / 3}$ is always non-negative. We find the following signs for $g^{\prime \prime}(x)$:

Interval	$x<-3$	$-3<x<-2$	$-2<x<-\frac{8}{5}$	$-\frac{8}{5}<x<0$	$x>0$
Sign of $g^{\prime \prime}(x)$	$\frac{--\cdot--}{+}=-$	$\frac{-++\cdot-}{+}=+$	$\frac{-++\cdot-}{+}=+$	$\frac{-\cdot+\cdot+}{+}=-$	$\frac{+\cdot+\cdot++}{+}=+$

So $g(x)$ has inflection points at $x=-3, x=-\frac{8}{5}$, and $x=0$ but it does not have an inflection point at $x=-2$.

Answer: Inflection point(s) at $x=$
$-3,-\frac{8}{5}, 0$

