8. [14 points]

Suppose H is a differentiable function such that H'(w) is also differentiable for 0 < w < 10. Several values of H(w)and of its first and second derivatives are given in the table on the right.

w	1	2	3	5	8
H(w)	6.3	5.4	5.2	4.8	0.7
H'(w)	-1.5	-0.4	-0.1	-0.6	-2.1
H''(w)	1.6	0.9	0	-0.8	-0.4

Assume that between each pair of consecutive values of w shown in the table, each of H'(w) and H''(w) is either always strictly decreasing or always strictly increasing. *Remember to show your work carefully.*

a. [3 points] Use an appropriate linear approximation to estimate H(5.2).

Solution: For w near 5, local linearization gives $H(w) \approx H(5) + H'(5)(w-5)$, so $H(5.2) \approx H(5) + H'(5)(5.2-5) = 4.8 - 0.6(0.2) = 4.8 - 0.12 = 4.68.$

- **Answer:** $H(5.2) \approx ____4.68$
- **b.** [5 points] Let J(w) be the local linearization of H near w = 2, and let K(w) be the local linearization of H near w = 3. Which of the following statements <u>must</u> be true? Circle <u>all</u> of the statements that must be true, or circle "NONE OF THESE".

J(2) > H(2)	J(2.5) > H(2.5)	K(3.5) > H(3.5)
J(2) = H(2)	J(2.5) = H(2.5)	K(3.5) = H(3.5)
J(2) < H(2)	J(2.5) < H(2.5)	K(3.5) < H(3.5)
J'(2) > H'(2)	K(2.5) > H(2.5)	K'(3.5) > H'(3.5)
J'(2) = H'(2)	K(2.5) = H(2.5)	K'(3.5) = H'(3.5)
J'(2) < H'(2)	K(2.5) < H(2.5)	K'(35) < H'(35)

NONE OF THESE

c. [3 points] Use the quadratic approximation of H(w) at w = 1 to estimate H(0.9). (Recall that a formula for the quadratic approximation Q(x) of a function f(x) at x = a is $Q(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$.)

Solution: Let Q(w) be the quadratic approximation of H(w) at w = 1. Then $Q(w) = H(1) + H'(1)(w-1) + \frac{H''(1)}{2}(w-1)^2 = 6.3 - 1.5(w-1) + \frac{1.6}{2}(w-1)^2$. So, $H(0.9) \approx Q(0.9) = 6.3 - 1.5(0.9 - 1) + \frac{1.6}{2}(0.9 - 1)^2 = 6.3 + 0.15 + 0.008 = 6.458$.

Answer:
$$H(0.9) \approx __{6.458}$$

d. [3 points] Consider the function N defined by $N(w) = H(2w^2 - 10)$, and let L(w) be the local linearization of N(w) at w = 3. Find a formula for L(w). Your answer should <u>not</u> include the function names N or H.

Solution: We know that L(w) = N(3) + N'(3)(w-3). Note that $N(3) = H(2(3^2) - 10) = H(8) = 0.7$. To find N'(3), we apply the Chain Rule. In particular, $N'(w) = (4w) \cdot H'(2w^2 - 10)$, so $N'(3) = (4 \cdot 3) \cdot H'(2(3^2) - 10) = 12H'(8) = 12(-2.1) = -25.2$. Therefore, L(w) = N(3) + N'(3)(w-3) = 0.7 - 25.2(w-3).

Answer: L(w) = 0.7 - 25.2(w - 3)