10. [10 points] Some information about a function $f(x)$ is given in the table below.

x	-2	-1	0	1	2	3	4
$f^{\prime}(x)$	-2	0	-2	0	1	0	-1
$f^{\prime \prime}(x)$	1	0	0	2	0	0	-2

Assume that $f^{\prime \prime}(x)$ is continuous on $[-2,4]$ and that the values of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are strictly positive or strictly negative between consecutive table entries. You do not need to justify your answers to the following questions.
a. [2 points] Circle all of the intervals on which $f^{\prime \prime}(x)$ must be negative.

$$
\begin{array}{lcc}
-2<x<-1 & -1<x<0 & 0<x<1
\end{array} 1<x<2
$$

b. [2 points] Circle all of the values of x for which $f(x)$ must have a local minimum.

$$
x=-1 \quad x=0 \quad x=1 \quad x=2 \quad x=3 \quad \text { NONE OF THESE }
$$

c. [2 points] Circle all of the values of x for which $f(x)$ must have an inflection point.

$$
x=-1 \quad x=0 \quad x=1 \quad x=2 \quad x=3 \quad \text { NONE OF THESE }
$$

d. [2 points] At which value(s) of x does $f(x)$ have a global maximum on $[1,4]$?

$$
x=1 \quad x=2 \quad x=3 \quad x=4 \quad \text { None of these } \quad \text { Cannot be determined }
$$

e. [2 points] At which value(s) of x does $f(x)$ have a global minimum on $[1,4]$?

$$
x=1 \quad x=2 \quad x=3 \quad x=4 \quad \text { None of these } \quad \text { Cannot be determined }
$$

