6. [9 points] A group of biology students is studying the length L of a newborn corn snake (in cm) as a function of its weight w (in grams). That is, L = G(w). A table of values of G(w) is shown below.

w	5	10	15	20	25
G(w)	24.5	31.6	38.7	44.7	50
G'(w)	2.23	1.58	1.30	1.12	1.05

Assume that G'(w) is a differentiable and decreasing function for 0 < w < 25.

a. [2 points] Find a formula for H(w), the tangent line approximation of G(w) near w = 20.

Answer: H(w) =_____

b. [1 point] Use the tangent line approximation of G(w) near w = 20 to approximate the length of a corn snake that weighs 22 grams.

Answer:

c. [2 points] Is your answer in part (b) an overestimate or an underestimate? Circle your answer and write a sentence to justify it.

Circle one: Overestimate Underestimate CANNOT BE DETERMINED

Justification:

d. [4 points] In their study of the growth of corn snakes, they found the results of a recent article that states that the average weight w of a corn snake (in grams) t weeks after being born is given by $w = \frac{1}{5}t^2$. Let $S(t) = G(\frac{1}{5}t^2)$ be the length of a corn snake t weeks after being born. Find a formula for P(t), the tangent line approximation of S(t) near t = 5.

Answer: P(t) =_____