9. [13 points] Let \mathcal{C} be the curve defined by the equation

$$
\ln (x y)=x^{2}
$$

Note that the curve \mathcal{C} satisfies

$$
\frac{d y}{d x}=\frac{y\left(2 x^{2}-1\right)}{x}
$$

a. [4 points] Exactly one of the following points lies on \mathcal{C}. Circle that one point.

$$
\begin{array}{llllll}
(0,1) & (1,0) & (1,1) & (1, e) & (e, 1) & (e, e)
\end{array}
$$

Then find an equation for the line tangent to \mathcal{C} at the point you chose above.

Answer: $y=\square$
b. [4 points] Find all points on \mathcal{C} with a horizontal tangent line. Give your answers as ordered pairs (coordinates). Show your work. Write none if no such points exist.

Answer: $\quad(x, y)=\square$
c. [5 points] Consider the curve \mathcal{D} defined by

$$
y+2^{x} y^{4}=3-\sin \left(x^{2}\right)
$$

Find a formula for $\frac{d y}{d x}$ in terms of x and y. To earn credit for this problem, you must compute this by hand and show every step of your work clearly.

Answer: $\frac{d y}{d x}=\square$

