1. [10 points] The graph of a portion of the derivative of \(b(x) \) is shown below. Assume that \(b(x) \) is defined and continuous on \([-5, 6]\).

In the following questions, circle all correct solutions.

a. [2 points] At which of the following values of \(x \) does \(b(x) \) appear to have a critical point?

\(x = -4 \) \(x = -3 \) \(x = 2 \) \(x = 3 \) \(\text{NONE OF THESE} \)

b. [2 points] At which of the following values of \(x \) does \(b(x) \) attain a local minimum?

\(x = -4 \) \(x = 0 \) \(x = 2 \) \(x = 4 \) \(\text{NONE OF THESE} \)

c. [2 points] At which of the following values of \(x \) does \(b(x) \) appear to have an inflection point?

\(x = -3 \) \(x = 2 \) \(x = 3 \) \(x = 5 \) \(\text{NONE OF THESE} \)

d. [2 points] On which interval(s) are the hypotheses of the Mean Value Theorem true for \(b(x) \)?

\([-4, -2]\) \([-2, 2]\) \([1, 4]\) \([-5, 6]\) \(\text{NONE OF THESE}\)

e. [2 points] For what values of \(x \) is \(b(x) \) concave up? Write your answer using inequalities or interval notation.

Answer: \((-5, -3) \cup (4, 6)\)