2. [10 points] Let $R(x)$ be a polynomial whose first and second derivatives are given below.

$$
R^{\prime}(x)=(x-1)^{7}(x+2)^{4} \quad \text { and } \quad R^{\prime \prime}(x)=(11 x+10)(x-1)^{6}(x+2)^{3}
$$

a. [6 points] Find the x-coordinates of the inflection points of $R(x)$. Use calculus to find and justify your answers, and show enough evidence to demonstrate that you have found them all. Write none if the function $R(x)$ has no points of inflection.

Solution: Potential inflection points: Since $R^{\prime \prime}(x)$ is defined for all x, we want all the solutions to $R^{\prime \prime}(x)=0$, that is $x=-\frac{10}{11}, x=1$ and $x=-2$.
Looking at the signs of $R^{\prime \prime}(x)$ around these points:

$$
\begin{aligned}
R^{\prime \prime}(-3) & =(-)(+)(-)=+ \\
R^{\prime \prime}(-1) & =(-)(+)(+)=- \\
R^{\prime \prime}(0) & =(+)(+)(+)=+ \\
R^{\prime \prime}(2) & =(+)(+)(+)=+
\end{aligned}
$$

OR you can compute the values of R " (x) around these points

$$
\begin{aligned}
R^{\prime \prime}(-3) & =94208 \\
R^{\prime \prime}(-1) & =-64 \\
R^{\prime \prime}(0) & =80 \\
R^{\prime \prime}(2) & =2048
\end{aligned}
$$

Since the sign of $R^{\prime \prime}(x)$ only changes at $x=-2$ and $x=-\frac{10}{11}$ then the inflection points of $R(x)$ are at $x=-2,-\frac{10}{11}$
b. [4 points] Find the quadratic approximation $G(x)$ of $R(x)$ at the point $(-1,5)$ on the graph of $R(x)$. Show all your work.
Solution: $\quad G(x)=R(-1)+R^{\prime}(-1)(x+1)+\frac{R^{\prime \prime}(-1)}{2}(x+1)^{2}$ where

$$
\begin{aligned}
R(-1) & =5 \quad \text { since }(-1,5) \text { is a point on the graph of } R(x) . \\
R^{\prime}(-1) & =(-1-1)^{7}(-1+2)^{4}=-128 \\
R^{\prime \prime}(-1) & =(11(-1)+10)(-1-1)^{6}(-1+2)^{3}=-64
\end{aligned}
$$

Hence $G(x)=5-128(x+1)-32(x+1)^{2}$

