6. [9 points] A group of biology students is studying the length L of a newborn corn snake (in $\mathrm{cm})$ as a function of its weight w (in grams). That is, $L=G(w)$. A table of values of $G(w)$ is shown below.

w	5	10	15	20	25
$G(w)$	24.5	31.6	38.7	44.7	50
$G^{\prime}(w)$	2.23	1.58	1.30	1.12	1.05

Assume that $G^{\prime}(w)$ is a differentiable and decreasing function for $0<w<25$.
a. [2 points] Find a formula for $H(w)$, the tangent line approximation of $G(w)$ near $w=20$.

Solution: The formula for is $H(w)=G(20)+G^{\prime}(20)(w-20)$. From the table we get $H(w)=44.7+1.12(w-20)$.
b. [1 point] Use the tangent line approximation of $G(w)$ near $w=20$ to approximate the length of a corn snake that weighs 22 grams.

$$
\text { Solution: } \quad G(22) \approx H(22)=1.12(22-20)+44.7=46.94 \mathrm{~cm} .
$$

c. [2 points] Is your answer in part (b) an overestimate or an underestimate? Circle your answer and write a sentence to justify it.

Solution:

Circle one: Overestimate Underestimate Cannot be determined

Justification:

Since $G^{\prime}(w)$ is a differentiable and decreasing function for $0<w<25$, then $G(w)$ is concave down on $0<w<25$. Hence the values of the tangent line approximation $H(w)$ will be larger than the actual values of $G(w)$ for $0<w<25$.
d. [4 points] In their study of the growth of corn snakes, they found the results of a recent article that states that the average weight w of a corn snake (in grams) t weeks after being born is given by $w=\frac{1}{5} t^{2}$. Let $S(t)=G\left(\frac{1}{5} t^{2}\right)$ be the length of a corn snake t weeks after being born. Find a formula for $P(t)$, the tangent line approximation of $S(t)$ near $t=5$.

Solution: The formula for the tangent line approximation $P(t)$ is $P(t)=S(5)+S^{\prime}(5)(t-5)$. Since $S(t)=G\left(\frac{1}{5} t^{2}\right)$, then $S^{\prime}(t)=\frac{2}{5} t \cdot G^{\prime}\left(\frac{1}{5} t^{2}\right)$. Using these formulas we get that $S(5)=G\left(\frac{1}{5}\left(5^{2}\right)\right)=G(5)=25.4$ and $S^{\prime}(5)=2 \cdot G^{\prime}(5)=4.46$.

Answer: $\quad P(t)=\underline{24.5+4.46(t-5)=4.46 t+2.2}$

