9. [13 points] Let C be the curve defined by the equation

$$\ln(xy) = x^2.$$

Note that the curve \mathcal{C} satisfies

$$\frac{dy}{dx} = \frac{y(2x^2 - 1)}{x}$$

- **a**. [4 points] Exactly one of the following points lies on \mathcal{C} . Circle that <u>one</u> point.
 - (0,1) (1,0) (1,1) (1,e) (e,1) (e,e)

Then find an equation for the line tangent to \mathcal{C} at the point you chose above.

Solution: Plugging (x, y) = (1, e) into $\ln(xy) = \ln(1(e)) = 1$ and $x^2 = 1^2 = 1$. Hence the point (1, e) is in the graph of the equation $\ln(xy) = x^2$. The slope *m* of the tangent line at (1, e) is

$$m = \frac{dy}{dx}|_{(1,e)} = \frac{e(2(1)^2 - 1)}{1} = e.$$

Hence the equation of the tangent line is given by y = e + e(x - 1).

b. [4 points] Find all points on C with a horizontal tangent line. Give your answers as ordered pairs (coordinates). Show your work. Write NONE if no such points exist.

Solution: We know C has a horizontal tangent line when $\frac{dy}{dx} = 0$. This happens when $y(2x^2 - 1) = 0$, which happens when y = 0 or $2x^2 - 1 = 0$. The latter is true when $x = \pm \frac{1}{\sqrt{2}}$. Now we plug these values into the equation for C to find the other coordinates. 1. When y = 0, the equation for the x-coordinate is $\ln(x(0)) = 0^2$. This equation has no solutions then there is no point with horizontal tangent lines of the form (x, 0). 2. When $x = \frac{1}{\sqrt{2}}$, then $\ln\left(\frac{1}{\sqrt{2}}y\right) = \left(\frac{1}{\sqrt{2}}\right)^2$ or $\ln\left(\frac{1}{\sqrt{2}}y\right) = 0.5$ $\frac{1}{\sqrt{2}}y = e^{0.5}$ and $y = \sqrt{2}\sqrt{e} = \sqrt{2e}$ 3. Similarly when $x = -\frac{1}{\sqrt{2}}$ $\ln\left(-\frac{1}{\sqrt{2}}y\right) = \left(-\frac{1}{\sqrt{2}}\right)^2$ yields $y = -\sqrt{2e}$ **Answer:** $(x, y) = \frac{\left(\frac{1}{\sqrt{2}}, \sqrt{2e}\right), \left(-\frac{1}{\sqrt{2}}, -\sqrt{2e}\right)}{\left(-\frac{1}{\sqrt{2}}, -\sqrt{2e}\right)}$ **c**. [5 points] Consider the curve \mathcal{D} defined by

$$y + 2^x y^4 = 3 - \sin(x^2).$$

Find a formula for $\frac{dy}{dx}$ in terms of x and y. To earn credit for this problem, you must compute this by hand and show every step of your work clearly.

Solution:

$$\frac{dy}{dx} + \ln 2 \cdot 2^{x}y^{4} + 2^{x} \cdot 4y^{3}\frac{dy}{dx} = -2x\cos(x^{2})$$
$$\frac{dy}{dx} + 2^{x} \cdot 4y^{3}\frac{dy}{dx} = -2x\cos(x^{2}) - \ln 2 \cdot 2^{x}y^{4}$$
$$\frac{dy}{dx}\left(1 + 2^{x} \cdot 4y^{3}\right) = -2x\cos(x^{2}) - \ln 2 \cdot 2^{x}y^{4}$$
$$\frac{dy}{dx} = \frac{-2x\cos(x^{2}) - \ln 2 \cdot 2^{x}y^{4}}{1 + 2^{x} \cdot 4y^{3}}$$