9. [13 points] Let \mathcal{C} be the curve defined by the equation

$$
\ln (x y)=x^{2}
$$

Note that the curve \mathcal{C} satisfies

$$
\frac{d y}{d x}=\frac{y\left(2 x^{2}-1\right)}{x} .
$$

a. [4 points] Exactly one of the following points lies on \mathcal{C}. Circle that one point.

$$
\begin{equation*}
(1, e) \tag{0,1}
\end{equation*}
$$

$$
\begin{equation*}
(e, 1) \quad(e, e) \tag{1,0}
\end{equation*}
$$

Then find an equation for the line tangent to \mathcal{C} at the point you chose above.
Solution: Plugging $(x, y)=(1, e)$ into $\ln (x y)=\ln (1(e))=1$ and $x^{2}=1^{2}=1$.Hence the point $(1, e)$ is in the graph of the equation $\ln (x y)=x^{2}$.
The slope m of the tangent line at $(1, e)$ is

$$
m=\left.\frac{d y}{d x}\right|_{(1, e)}=\frac{e\left(2(1)^{2}-1\right)}{1}=e .
$$

Hence the equation of the tangent line is given by $y=e+e(x-1)$.
b. [4 points] Find all points on \mathcal{C} with a horizontal tangent line. Give your answers as ordered pairs (coordinates). Show your work. Write none if no such points exist.

Solution: We know \mathcal{C} has a horizontal tangent line when $\frac{d y}{d x}=0$. This happens when $y\left(2 x^{2}-1\right)=0$, which happens when $y=0$ or $2 x^{2}-1=0$. The latter is true when $x= \pm \frac{1}{\sqrt{2}}$.
Now we plug these values into the equation for \mathcal{C} to find the other coordinates.

1. When $y=0$, the equation for the x-coordinate is $\ln (x(0))=0^{2}$. This equation has no solutions then there is no point with horizontal tangent lines of the form $(x, 0)$.
2. When $x=\frac{1}{\sqrt{2}}$, then

$$
\begin{aligned}
\ln \left(\frac{1}{\sqrt{2}} y\right) & =\left(\frac{1}{\sqrt{2}}\right)^{2} \quad \text { or } \quad \ln \left(\frac{1}{\sqrt{2}} y\right)=0.5 \\
\frac{1}{\sqrt{2}} y & =e^{0.5} \quad \text { and } \quad y=\sqrt{2} \sqrt{e}=\sqrt{2 e}
\end{aligned}
$$

3. Similarly when $x=-\frac{1}{\sqrt{2}}$

$$
\ln \left(-\frac{1}{\sqrt{2}} y\right)=\left(-\frac{1}{\sqrt{2}}\right)^{2} \quad \text { yields } \quad y=-\sqrt{2 e}
$$

Answer: $(x, y)=\quad\left(\frac{1}{\sqrt{2}}, \sqrt{2 e}\right),\left(-\frac{1}{\sqrt{2}},-\sqrt{2 e}\right)$
c. [5 points] Consider the curve \mathcal{D} defined by

$$
y+2^{x} y^{4}=3-\sin \left(x^{2}\right)
$$

Find a formula for $\frac{d y}{d x}$ in terms of x and y. To earn credit for this problem, you must compute this by hand and show every step of your work clearly.

Solution:

$$
\begin{aligned}
\frac{d y}{d x}+\ln 2 \cdot 2^{x} y^{4}+2^{x} \cdot 4 y^{3} \frac{d y}{d x} & =-2 x \cos \left(x^{2}\right) \\
\frac{d y}{d x}+2^{x} \cdot 4 y^{3} \frac{d y}{d x} & =-2 x \cos \left(x^{2}\right)-\ln 2 \cdot 2^{x} y^{4} \\
\frac{d y}{d x}\left(1+2^{x} \cdot 4 y^{3}\right) & =-2 x \cos \left(x^{2}\right)-\ln 2 \cdot 2^{x} y^{4} \\
\frac{d y}{d x} & =\frac{-2 x \cos \left(x^{2}\right)-\ln 2 \cdot 2^{x} y^{4}}{1+2^{x} \cdot 4 y^{3}}
\end{aligned}
$$

