1. [13 points] Some values of the twice differentiable function f(x) and of its first and second derivative are given by the following table

x	0	1	2	4	5	6	7
f(x)	1			4	4.3	5	
f'(x)			8		0.25	0.6	2
f''(x)	4				0.1	0.2	

Suppose the function f(x) is defined and invertible for $-\infty < x < \infty$. In the following questions, you will find <u>some</u> of the missing values using the information given. If there is not enough information given to answer the question, write "NEI". Show your work.

a. [4 points] The function $a(x) = \ln(1 + f(x))$ satisfies a'(2) = 2. Find f(2).

Answer: f(2) =_____

b. [3 points] Let b(x) = f(x)f'(x) and b'(0) = 4. Find f'(0).

Answers:	f'	'(0)	=	
----------	----	------	---	--

The problem continues on the next page.

For your convenience, the table with some values of f(x), f'(x), and f''(x) has been reproduced below.

x	0	1	2	4	5	6	7
f(x)	1			4	4.3	5	
f'(x)			8		0.25	0.6	2
f''(x)	4				0.1	0.2	

Suppose the function f(x) is defined and invertible for $-\infty < x < \infty$. Answer the following questions. If there is not enough information given to answer the question, write "NEI". Show your work.

c. [3 points] The quadratic approximation Q(x) of the function f(x) at x = 1 is $Q(x) = \frac{1}{2}x + \frac{3}{2}$. Find f(1), f'(1), and f''(1).

Answers: f(1) =_____, f'(1) =_____, f''(1) =_____, f''(1) =______

d. [3 points] Let $h(x) = f^{-1}(x)$. Find the value of h'(5).