3. [12 points] The Public Transit Authorities (PTA) are designing rain shelters for their bus stops. They decide to place a roof in the shape of half a cylinder on four vertical legs of height y feet. The four legs are placed in a rectangle on the ground with width x feet and length y feet.

The costs of production are:

- $\$ 25$ for each foot of the total length of the legs,
- $\$ 40$ for each square foot of the area of the roof.

The following formulas may be useful in this problem:

- the surface area of a cylinder of radius r and length ℓ is $2 \pi r \ell$,
- the volume of a cylinder of radius r and length ℓ is $\pi r^{2} \ell$.

The PTA would like to spend exactly $\$ 5000$ on one rain shelter.
a. [5 points] Find a formula for y in terms of x.

Solution: We have that

$$
25 \cdot(4 y)+40 \cdot \frac{1}{2}\left(2 \pi\left(\frac{x}{2}\right)\right) y=5000
$$

so

$$
\begin{gathered}
y(100+20 \pi x)=5000, \\
y=\frac{5000}{100+20 \pi x} .
\end{gathered}
$$

Answer: $y=\frac{250}{5+\pi x}$.
b. [4 points] Find a formula for the total volume in cubic feet covered by the shelter, $V(x)$, if the width of the dashed rectangle has length x feet.

Solution: The volume is

$$
V=x y^{2}+\frac{1}{2} \pi\left(\frac{x}{2}\right)^{2} y
$$

and hence

$$
\text { Answer: } V(x)=x \cdot\left(\frac{250}{5+\pi x}\right)^{2}+\frac{1}{2} \pi\left(\frac{x}{2}\right)^{2} \cdot\left(\frac{250}{5+\pi x}\right) .
$$

c. [3 points] The PTA wants to make sure that each of the sides of the rectangle has length at least 5 feet, and the height (that is, y) of the shelter is at least 8 feet. In the context of the problem, what is the domain of the function $V(x)$?
Solution: We know that $x \geq 5$ and also $y \geq 8$. Therefore, $\frac{250}{5+\pi x}=y \geq 8 \quad 250 \geq$ $40+8 \pi x \quad x \leq \frac{210}{8 \pi}=\frac{105}{4 \pi} . \quad$ Answer: $5 \leq x \leq \frac{105}{4 \pi}$

