5. [15 points] The graph of the function $f(x)$ with domain $-4 \leq x \leq 8$ is shown below.

The function $f(x)$ satisifies:

- $f(x)=1.5 x^{\frac{1}{3}}$

$$
\text { for }-1<x<1 \text {, }
$$

- $f(x)=4+\sin \left(\frac{\pi}{4}(x-3)\right)$
for $3 \leq x<5$ and $5<x \leq 8$.

a. [2 points] Estimate the x-coordinate(s) of all the local minimum(s) of $f(x)$ in $-4<x<8$. Write "None" if $f(x)$ does not have any local minimums.

Solution:
Answer: $x=-2.4,5$
b. [3 points] Find the value(s) of b in $-4<b<8$ for which the limit $\lim _{h \rightarrow 0} \frac{f(b+h)-f(b)}{h}$ does not exist. Write "NONE" if there are no such values of b.
Solution:
Answer: $b=0,3,5$
c. [4 points] Estimate the x-coordinate(s) of all critical points of $f(x)$ in $-4<x<8$. Write "NONE" if $f(x)$ does not have any critical points.

Solution:

Answer: $x=-2.4,0,3,5$
d. [3 points] On which of the following intervals is the conclusion of the Mean Value Theorem true? Circle your answer.

Solution:

$[-4,0]$

$$
\begin{equation*}
[0,5] \tag{3,7}
\end{equation*}
$$

$$
[1,3]
$$

None
e. [3 points] On which of the following intervals are the hypotheses of the Mean Value Theorem true? Circle your answer.

Solution:

$$
\begin{equation*}
[-3,-1] \tag{-2,2}
\end{equation*}
$$

$$
[0,2]
$$

$$
[3,5]
$$

None

