6. [5 points] The function $P(t)$ is given by the equation

$$
P(t)= \begin{cases}t+4 & t<2 \\ t^{2}-3 t+8 & 2 \leq t \leq 3 \\ \frac{1}{9}\left(t^{3}+44\right) & t>3\end{cases}
$$

For which values of t is $P(t)$ differentiable? Show all your work to justify your answer.
Solution:

- At $t=2$:
- Continuity:

$$
\lim _{t \rightarrow 2^{-}} t+4=6 \quad \text { and } \quad \lim _{t \rightarrow 2^{+}} t^{2}-3 t+8=6 \quad \text { and } \quad P(2)=6
$$

Hence $P(t)$ is continuous at $t=2$.

- Differentiability: The function $g(t)=t+4$ satisfies $g^{\prime}(t)=1$ and hence $g^{\prime}(2)=1$. Similarly, it $h(t)=t^{2}-3 t+8$ satisfies $h^{\prime}(t)=2 t-3$ and $h^{\prime}(2)=1$. So

$$
\lim _{t \rightarrow 2-} P^{\prime}(t)=1=\lim _{t \rightarrow 2+} P^{\prime}(t) .
$$

Hence $P(t)$ is differentiable at $t=2\left(\right.$ with $\left.P^{\prime}(2)=1\right)$.

- At $t=3$:
- Continuity:

$$
\lim _{t \rightarrow 3^{-}} t^{2}-3 t+8=8 \quad \text { and } \quad \lim _{t \rightarrow 3^{+}} \frac{1}{9}\left(t^{3}+44\right)=\frac{71}{9} \neq 8
$$

Hence $P(t)$ is not continuous at $t=3$ and therefore not differentiable at $t=3$.

- All the functions (polynomials) involved in the formula of $P(t)$ are differentiable on the domains assigned to them.

Hence $P(t)$ is differentiable for all $t \neq 3$.
Answer: The function $P(t)$ is differentiable for the following values of t : all $t \neq 3$.

