8. [14 points] The graph of the **derivative** g'(x) of the function g(x) with domain -5 < x < 10 is shown below.

The function g'(x) has corners at x = 5 and x = 7, and it is linear on the intervals (5,7) and (7,10).

If there is not enough information given to answer the question, write "NEI". If the answer is none, write "NONE".

a. [3 points] Estimate the interval(s) on which the function g(x) is concave up.

Solution:

b. [3 points] Estimate all the x-coordinates of the inflection points of g(x).

Solution: Answer:
$$x = -3, 3, 7$$
.

c. [2 points] Estimate the values of x in -5 < x < 10 for which g''(x) is not defined.

Solution: Answer:
$$x = 5, 7$$
.

d. [2 points] Estimate the interval(s) on which g'''(x) > 0. Recall that g'''(x) is the derivative of g''(x).

Solution:

```
Answer: (approximately) (-5, -2) and (0, 1.8).
```

Answer: (-3,3) and (7,10)

e. [4 points] Let P(x) be the quadratic approximation of g(x) at x = 8. Find the formula of P(x) in terms of only the variable x if g(8) = -2. Your answer should not include the letter g.

Solution:
$$g(8) = -2$$
, $g'(8) = 1 + \frac{4}{3} = \frac{7}{3}$ and $g''(8) = \frac{4}{3}$. Then
Answer: $P(x) = -2 + \frac{7}{3}(x-8) + \frac{2}{3}(x-8)^2$