8. [14 points] The graph of the derivative $g^{\prime}(x)$ of the function $g(x)$ with domain $-5<x<10$ is shown below.

$$
y=g^{\prime}(x)
$$

The function $g^{\prime}(x)$ has corners at $x=5$ and $x=7$, and it is linear on the intervals $(5,7)$ and $(7,10)$.

If there is not enough information given to answer the question, write "NEI". If the answer is none, write "None".

a. [3 points] Estimate the interval(s) on which the function $g(x)$ is concave up.

Solution:
Answer: $(-3,3)$ and (7,10)
b. [3 points] Estimate all the x-coordinates of the inflection points of $g(x)$.

Solution:

Answer: $x=-3,3,7$.
c. [2 points] Estimate the values of x in $-5<x<10$ for which $g^{\prime \prime}(x)$ is not defined.

Solution:
Answer: $x=5,7$.
d. [2 points] Estimate the interval(s) on which $g^{\prime \prime \prime}(x)>0$. Recall that $g^{\prime \prime \prime}(x)$ is the derivative of $g^{\prime \prime}(x)$.

Solution: Answer: (approximately) $(-5,-2)$ and $(0,1.8)$.
e. [4 points] Let $P(x)$ be the quadratic approximation of $g(x)$ at $x=8$. Find the formula of $P(x)$ in terms of only the variable x if $g(8)=-2$. Your answer should not include the letter g.

Solution: $g(8)=-2, g^{\prime}(8)=1+\frac{4}{3}=\frac{7}{3}$ and $g^{\prime \prime}(8)=\frac{4}{3}$. Then
Answer: $P(x)=-2+\frac{7}{3}(x-8)+\frac{2}{3}(x-8)^{2}$

