9. [7 points] The graph of $h^{\prime}(x)$ (the derivative of $h(x)$) is shown below.

$$
y=h^{\prime}(x)
$$

a. [3 points] Find a formula for the tangent line approximation $L(x)$ to the function $h(x)$ near $x=2$ if the point $(2,-3)$ lies on the graph of $y=h(x)$. Your answer should not include the letter h.

Solution: $\quad h(2)=-3$ and $h^{\prime}(2)=1$.
Answer: $L(x)=-3+(x-2)$
b. [1 point] Use the tangent line approximation to the function $h(x)$ near $x=2$ to approximate the value of $h(1.6)$.

Solution:

Answer: $h(1.6)$ is approximately $L(1.6)=-3+(1.6-2)=-3.4$.
c. [3 points] Is your approximation in part \mathbf{b} an overestimate or an underestimate? Circle your answer and give a justification of your answer.

Solution:
Overestimate Underestimate Not enough information

Justification:

Since $h^{\prime}(x)$ is decreasing on [1.6,2], $h(x)$ is concave down on $[1.6,2]$. Hence the approximation is an overestimate.

