5. [8 points] Consider the function $h(x)$ where k and A are constants:

$$
h(x)= \begin{cases}2 x+1 & x \leq k \\ (x-A)^{2}+2 & x>k\end{cases}
$$

a. [5 points] There is exactly one choice of the constants A and k that make $h(x)$ differentiable. Find these values of A and k.

Answer: $A=$

\qquad Answer: $k=$ \qquad
b. [3 points] If $A>k$, then $h(x)$ has two critical points. What are the x-coordinates of these points? Your answers may be in terms of A and/or k. Show work or briefly explain your reasoning.

Answer: Critical point(s) at $x=$ \qquad

