10. [8 points] Let $j(t)$ be a differentiable function with domain $(0, \infty)$ that satisfies all of the following:

- $j(5)=0$
- $j(t)$ has exactly two critical points
- $j(t)$ has a local maximum at $t=5$
- $j(t)$ has a local minimum at $t=9$
- $\lim _{t \rightarrow 0^{+}} j(t)=-\infty$
- $\lim _{t \rightarrow \infty} j(t)=0$

You do not need to show work in this problem.
a. [2 points] Circle all of the following intervals on which $j^{\prime}(t)$ must always be negative.

$$
\begin{equation*}
(0,2) \tag{2,5}
\end{equation*}
$$

$$
(5,9)
$$

$$
(9, \infty)
$$

b. [3 points] Find all the values of t at which $j(t)$ attains global extrema on the interval [1,9]. If not enough information is provided, write NOT ENOUGH INFO. If there are no such values of t, write NONE.

Solution: We can conclude that $j(t)$ increases until $t=5$, then decreases until $t=9$. So, $t=5$ must be the global max.
By the Extreme Value Theorem, we know $j(t)$ has a global minimum on $[1,9]$, but we don't know which value, $j(1)$ or $j(9)$, is smaller.

Answer: Global max(es) at $t=$
Answer: Global $\min (\mathrm{s})$ at $t=$ NOT ENOUGH INFO
c. [3 points] Find all the values of t at which $j(t)$ attains global extrema on its domain. If not enough information is provided, write not enough info. If there are no such values of t, write NONE.
Solution: Similarly to part b., we can conclude that $j(t)$ increases until $t=5$, then decreases until $t=9$, then increases again. Since $j(5)=0$, we know $t=5$ must be the global max, since $j(t)$ can never again reach 0 . (If it did, there would be another critical point, since $\lim _{t \rightarrow \infty} j(t)=0$.)
Also, we know there is no global min since $\lim _{t \rightarrow 0^{+}} j(t)=-\infty$.

Answer: Global max(es) at $t=$
Answer: Global $\min (\mathrm{s})$ at $t=$ \qquad
NONE

