4. [10 points]
a. Let \mathcal{C} be the curve given by the equation

$$
y \cos (2 x)=y^{3}+b,
$$

where b is a constant. The curve \mathcal{C} passes through the point $(0,2)$.
i. [2 points] Find b.

Solution: Plugging in (0,2), we find that

$$
\begin{gathered}
2 \cos (2 \cdot 0)=2^{3}+b \\
2=8+b \\
b=-6
\end{gathered}
$$

Answer: $b=$ \qquad
ii. [5 points] For the curve \mathcal{C}, find a formula for $\frac{d y}{d x}$ in terms of x and y. To earn credit for this problem, you must compute this by hand and show every step of your work clearly.

Solution:

Using implicit differentiation, and the product rule on the left-hand side,

$$
\begin{gathered}
-y \sin (2 x) \cdot 2+\frac{d y}{d x} \cos (2 x)=3 y^{2} \frac{d y}{d x} \\
\frac{d y}{d x} \cos (2 x)-3 y^{2} \frac{d y}{d x}=2 y \sin (2 x) \\
\frac{d y}{d x}\left(\cos (2 x)-3 y^{2}\right)=2 y \sin (2 x) \\
\frac{d y}{d x}=\frac{2 y \sin (2 x)}{\cos (2 x)-3 y^{2}}
\end{gathered}
$$

Answer: $\frac{d y}{d x}=\square \frac{d y}{d x}=\frac{2 y \sin (2 x)}{\cos (2 x)-3 y^{2}}$
b. [3 points] A different curve \mathcal{R} passes through the point $(0,1)$ and satisfies

$$
\frac{d y}{d x}=\frac{2 x-y}{x-2 y} .
$$

One of the following graphs is the graph of \mathcal{R}. Which of the graphs is it? Write the numeral (I, II, III, or IV) of the graph you choose on the answer line at the bottom of this page.

Solution: We find that the slope at the given point $(0,1)$ is $1 / 2$, so this rules out III. Finding that the slope at the point $(0,-1)$ must also be $1 / 2$, we conclude that II must be correct.
(We could also have ruled out I and IV (and III) by noting that these graphs have vertical tangents when $y=0$, but $d y / d x$ is not undefined when $y=0$.)

> Answer: II

