5. [8 points] Consider the function $h(x)$ where k and A are constants:

$$
h(x)= \begin{cases}2 x+1 & x \leq k \\ (x-A)^{2}+2 & x>k\end{cases}
$$

a. [5 points] There is exactly one choice of the constants A and k that make $h(x)$ differentiable. Find these values of A and k.

Solution: Since both pieces of the function are differentiable, the only place where $h(x)$ might not be differentiable is at the point $x=k$. To be differentiable at $x=k$, the function must first be continuous at $x=k$, so we set the two parts of the piecewise function equal to each other at $x=k$:

$$
2 k+1=(k-A)^{2}+2 .
$$

We also need to set their derivatives equal to each other at $x=k$:

$$
\begin{array}{r}
2=2(k-A) \\
2=2 k-2 A \\
2+2 A=2 k \\
1+A=k .
\end{array}
$$

Substituting this into the first equation we get

$$
\begin{array}{r}
2(1+A)+1=((1+A)-A)^{2}+2 \\
2+2 A+1=(1)^{2}+2 \\
2 A+3=3 \\
2 A=0 \\
A=0,
\end{array}
$$

and since $k=1+A$ we have that $k=1$.
Answer: $\quad A=0$

$$
\text { Answer: } \quad k=\frac{1}{ـ}
$$

b. [3 points] If $A>k$, then $h(x)$ has two critical points. What are the x-coordinates of these points? Your answers may be in terms of A and/or k. Show work or briefly explain your reasoning.
Solution: If $A>k$, then we certainly cannot be in the situation where $A=0$ and $k=1$ from part a. Thus $h(x)$ will not be differentiable at k and $x=k$ is one of the critical points.

Since the derivative of $2 x+1$ is 2 , there are no critical points less than k.
Finally, the derivative of $(x-A)^{2}+2$ is $2(x-A)$, which is zero when $x=A$. Since $A>k$, this point does fall in the domain of the second piece, and so $x=A$ is the second critical point.

Answer: Critical point(s) at $x=$ \qquad

