8. [8 points]

Kristen is machining a metal washer to fix her broken down motorcycle. A washer is a flat, circular piece of metal with a hole in the middle. Kristen's washer is depicted by the shaded region in the figure to the right. The washer has an inner radius of r centimeters and an outer radius of R centimeters. The area of the washer must be exactly 5 square centimeters, and r must be at least 1 centimeter.

a. [3 points] Find a formula for r in terms of R.

Solution: The area of the washer is the difference between the outer circle's area and inner circle's area. So, since this must be 5 square centimeters we have $\pi R^{2}-\pi r^{2}=5$, so $r^{2}=$ $\frac{\pi R^{2}-5}{\pi}$, and $r=\sqrt{\frac{\pi R^{2}-5}{\pi}}$.

Answer: $r=$ \qquad
b. [2 points] The structural integrity of the washer depends on both its inner radius and its outer radius. Specifically, the structural integrity is given by the equation

$$
S=32 R(\ln (r R+1)+7) .
$$

Express S as a function of R. Your answer should not include r.

Solution: We substitute our answer from part a. into the formula for S.

$$
\text { Answer: } \quad S(R)=-32 R\left(\ln \left(R \sqrt{\frac{\pi R^{2}-5}{\pi}}+1\right)+7\right)
$$

c. [3 points] What is the domain of $S(R)$ in the context of this problem? You may give your answer as an interval or using inequalities.

Solution: We are told that r must be at least 1 . When $r=1$, we have

$$
\begin{array}{r}
\pi R^{2}-\pi r^{2}=5 \\
\pi R^{2}-\pi=5 \\
R^{2}=\frac{5+\pi}{\pi} \\
R=\sqrt{\frac{5+\pi}{\pi}}
\end{array}
$$

This is the smallest possible value of R, because if we make r larger, R must also be made larger so that the area of the washer can remain 5 square centimeters. There is no upper bound on how large R can be.

