9. [9 points] Consider the function

$$
f(x)= \begin{cases}-2 e^{2 x-2} & x \leq 1 \\ x^{3}-3 x^{2} & x>1\end{cases}
$$

a. [5 points] Find all critical point(s) of $f(x)$. Write NONE if there are none.

Solution: The derivative of $y=-2 e^{2 x-2}$ is $\frac{d y}{d x}=-4 e^{2 x-2}$. So there are no critical points for $x<1$. Also, at $x=1$, this piece has a slope of -4 .

The derivative of $y=x^{3}-3 x^{2}$ is $\frac{d y}{d x}=3 x^{2}-6 x=3 x(x-2)$ which is zero at $x=0$ and $x=2$. Only $x=2$ is on the domain of this piece, so $x=2$ is a critical point and $x=0$ is not. Also, at $x=1$, this piece has a slope of -3 .

Since the slopes aren't equal on the left and right sides of $x=1$, the function $f(x)$ can't be differentiable there. So $x=1$ is also a critical point.

Answer: Critical point(s) at $x=$ 1 and 2
b. [4 points] Find the x-coordinate of all global maxima and global minima of $f(x)$ on the interval $(-\infty, 4]$. For each, write none if there are none.

Solution: Since $f(x)$ is continuous (because both pieces equal -2 when $x=1$), we can compare the value of $f(x)$ at the critical points $x=1$ and $x=2$ along with the end point $x=4$, and we need to consider the end behavior as $x \rightarrow \infty$:

$$
\begin{aligned}
& f(1)=-2 e^{2(1)-2}=-2 e^{0}=-2 \\
& f(2)=(2)^{3}-3(2)^{2}=8-12=-4 \\
& f(4)=(4)^{3}-3(4)^{2}=64-48=12 \\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}-2 e^{2 x-2}=0
\end{aligned}
$$

So, $f(x)$ has a global maximum at $x=4$ and a global minimum at $x=2$.

Answer: global max(es) at $x=$

Answer: global min(s) at $x=$ \qquad

