1. [12 points] A function $h(x)$ is defined and continuous on $(-\infty, \infty)$. A portion of the graph of $h^{\prime}(x)$, the derivative of $h(x)$, is shown below. Note that $h^{\prime}(x)$ has a vertical asymptote at $x=6$.

In each part a. $-\mathbf{f}$. below, select all correct choices.
a. [2 points] At which of the following value(s) does $h(x)$ have a critical point?

$$
x=-6 \quad x=-3 \quad x=0 \quad x=1 \quad \text { NONE OF THESE }
$$

b. [2 points] At which of the following value(s) does $h(x)$ have a local minimum?

$$
x=-5 \quad x=-1 \quad x=2 \quad x=6 \quad \text { NONE OF THESE }
$$

c. [2 points] At which of the following value(s) does $h(x)$ have an inflection point?

$$
x=-6 \quad x=-5 \quad x=-3 \quad x=6 \quad \text { NONE OF THESE }
$$

d. [2 points] On which of the following interval(s) is $h(x)$ increasing on the entire interval?

$$
\begin{equation*}
(-5,-3) \quad(-1,1) \quad(6,7) \quad \text { NONE OF THESE } \tag{-1,1}
\end{equation*}
$$

e. [2 points] On which of the following interval(s) is $h(x)$ concave down on the entire interval?

$$
(-7,-5) \quad(-5,-3) \quad(-1,1) \quad \text { NONE OF THESE }
$$

f. [2 points] On which of the following interval(s) is $h^{\prime \prime}(x)$ decreasing on the entire interval?

$$
(-7,-5) \quad(-5,-3) \quad(-1,1) \quad \text { NONE OF THESE }
$$

