4. [12 points]

Suppose $h(x)$ is a continuous function defined for all real numbers $x$. The derivative and second derivative of $h(x)$ are given by

$$
h^{\prime}(x)=(x-13)^{2}(x+4)^{3 / 7} \quad \text { and } \quad h^{\prime \prime}(x)=\frac{17(x-13)(x+1)}{7(x+4)^{4 / 7}} .
$$

a. [6 points] Find the $x$-coordinates of all local extrema of $h(x)$. If there are none of a particular type, write NONE. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all local extrema.
Solution: The critical points of $h(x)$ are at $x=13,-4$. Applying the first derivative test we have:

|  | $x<-4$ | $-4<x<13$ | $x>13$ |
| :---: | :---: | :---: | :---: |
| $h^{\prime}(x)$ | $+\cdot-=-$ | $+\cdot+=+$ | $+\cdot+=+$ |

Answer: $\quad$ Local max(es) at $x=$ None $\quad$ Local min(s) at $x=\underline{-4}$
b. [6 points] Find the $x$-coordinates of all inflection points of $h(x)$. If there are none, write none. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all inflection points.
Solution: The second derivative is zero at $x=13,-1$ and undefined at $x=-4$. We need to check if the sign of $h^{\prime \prime}(x)$ changes at these points.

|  | $x<-4$ | $-4<x<-1$ | $-1<x<13$ | $x>13$ |
| :---: | :---: | :---: | :---: | :---: |
| $h^{\prime \prime}(x)$ | $\frac{---}{+}=+$ | $\frac{---}{+}=+$ | $\frac{-++}{+}=-$ | $\frac{+\cdot+}{+}=+$ |

Answer: Inflection Point(s) at $x=$

