Note: exam problem numbering is off by 1

5. [12 points] Isabelle is a bee keeper who wants to sell honey at the local farmers market. Let y = H(d) be the amount of honey, in pounds, that Isabelle will sell in a month if she charges d dollars per pound of honey. The functions H(d) and H'(d) are defined and differentiable for all $d \ge 0$. Some values are given in the table below.

d	5.00	5.75	6.50	7.25	8.00	8.75
H(d)	59	52	46	38	29	23
H'(d)	-10.4	-9.1	-7.8	-11.0	-12.2	-7.6

Assume that H(d) is decreasing and that between each pair of consecutive values of d given in the table, H'(d) is either always increasing or always decreasing.

a. [3 points] Write a formula for the linear approximation L(d) of H(d) near d = 6.50, and use it to estimate the amount of honey, in pounds, Isabelle will sell if she charges \$6.30 per pound.

Answer: L(d) = -7.8(d-6.5) + 46

Answer: \approx _____\$47.56

b. [2 points] Is your estimate from the previous part an overestimate, an underestimate, neither, or is there not enough information to decide? Briefly explain your answer.

Solution: At d = 6.3, H'(d) is increasing. Thus H(d) is concave up, and so the linear approximation is an underestimate.

c. [3 points] Write a formula for the linear approximation K(y) of $(H^{-1})(y)$ near y = 31.

Solution: Not enough information due to a typo; all students earned these 3 points on the exam.

d. [2 points] Use the table to approximate H''(8.75).

Answer: $H''(8.75) \approx \underline{H'(8.75) - H'(8)}_{8.75 - 8} \approx 6.133$

e. [2 points] The hypotheses of the Mean Value Theorem are satisfied for H(d) on the interval [5.00, 5.75]. The conclusion of the theorem then tells you that there is a c in the interval [5, 5.75] so that

<u>H'(c)</u> = $\frac{H(5.75)-H(5)}{5.75-5} \approx -9.33$