3. [14 points] A table of values for a differentiable, invertible function $g(x)$ and its derivative $g^{\prime}(x)$ are shown below to the left. (This is the same table as in the previous problem.) Below to the right is shown a portion of the graph of $h^{\prime}(x)$, the derivative of a function $h(x)$. The function $h(x)$ is defined and continuous for all real numbers.

x	0	1	2	3	4	5
$g(x)$	0	0.5	1	2	5	6
$g^{\prime}(x)$	1.9	1.5	2.8	2.5	2.6	3

Answer parts a.-c., or write NONE if appropriate. You do not need to show work.
a. [2 points] List the x-coordinates of all critical points of $h(x)$ on the interval $(-2,4)$.

Solution: The critical points of $h(x)$ occur where $h^{\prime}(x)$ either does not exist or is equal to 0 . By looking at the graph, we see that this happens when $x=-1,0,2$, and 3 .
b. [2 points] List the x-coordinates of all critical points of $h^{\prime}(x)$ on the interval $(-2,4)$.

Solution: Recall that critical points of $h^{\prime}(x)$ have to be points in the domain of $h^{\prime}(x)$ where the derivative of $h^{\prime}(x)$ either is 0 or does not exist. We see no places where the derivative of $h^{\prime}(x)$ is 0 , but we do see that the derivative of $h^{\prime}(x)$ does not exist when $x=0$ and $x=1$.
c. [2 points] List the x-coordinates of all local minima of $h(x)$ on the interval $(-2,4)$.

Solution: We use the first derivative test, and see that $h^{\prime}(x)$ is negative to the left of $x=-1$, and is positive to the right of $x=-1$. It has this same sort of behavior for $x=3$. We conclude that $h^{\prime}(x)$ has local minima at $x=-1$ and $x=3$.
d. [8 points] A curve is described implictly by the equation

$$
y g(x)=e^{h(x)} .
$$

Assume $h(1)=0$. Then the point $(1,2)$ lies on this curve.
i. Find $\frac{d y}{d x}$ at the point $(1,2)$. You must show every step of your work.

Solution: We first find an expression for $\frac{d y}{d x}$. We differentiate the left-hand side of our equation using the Product Rule, and we differentiate the right-hand side using the Chain Rule:

$$
\begin{aligned}
\frac{d}{d x}(y g(x)) & =\frac{d}{d x}\left(e^{h(x)}\right) \\
y g^{\prime}(x)+\frac{d y}{d x} g(x) & =e^{h(x)} h^{\prime}(x) .
\end{aligned}
$$

We plug in $x=1$ and $y=2$ to obtain

$$
\begin{aligned}
2 g^{\prime}(1)+\frac{d y}{d x} g(1) & =e^{h(1)} h^{\prime}(1) \\
2 \cdot 1.5+\frac{d y}{d x} \cdot 0.5 & =e^{0} \cdot 2 \\
3+\frac{1}{2} \frac{d y}{d x} & =2 \\
\frac{d y}{d x} & =(2-3) \cdot 2=-2 .
\end{aligned}
$$

ii. Write an equation for the tangent line to the curve at the point $(1,2)$.

Solution: We use point-slope form:

$$
y-2=-2(x-1) \quad \text { so } \quad y=2-2(x-1) \quad \text { or } \quad y=4-2 x .
$$

