4. [10 points] A landscaper is designing a rectangular garden surrounding a circular fountain in the middle.

- The diameter of the fountain is 2 meters.
- The distance from the fountain to the eastern and western edges of the garden is a meters.
- The distance from the fountain to the northern and southern edges of the garden is b meters.
- The part of the garden outside of the circular fountain will be covered with exactly 300 square meters of grass.

a. [4 points] Write a formula for b in terms of a.

Solution: Observe that the radius of the fountain is 1 meter, so that its area is $\pi \cdot 1^{2}=\pi$. The length of the rectangle is $2+2 a$, and the width is $2+2 b$, so the area of the rectangle is $(2+2 a)(2+2 b)$. The area of the part of the garden outside the circular fountain is the difference between these two numbers we have found: $(2+2 a)(2+2 b)-\pi$. We are told that this area is equal to 300 meters, and so we have an equation that we can use to solve for b :

$$
\begin{aligned}
(2+2 a)(2+2 b)-\pi & =300 \\
2+2 b & =\frac{300+\pi}{2+2 a} \\
b & =\frac{1}{2}\left(\frac{300+\pi}{2+2 a}-2\right)=\frac{300+\pi-4 a-4}{4 a-4} .
\end{aligned}
$$

b. [2 points] Write a formula for the function $P(a)$ which gives the rectangular perimeter of the garden in terms of a only.
Solution: The rectangular perimeter of the garden is equal to $2(2 a+2)+2(2 b+2)$. We may use our equation $2+2 b=\frac{300+\pi}{2+2 a}$ to write this in terms of a :

$$
P(a)=2(2 a+2)+2\left(\frac{300+\pi}{2+2 a}\right) .
$$

c. [4 points] In the context of this problem, what is the domain of $P(a)$?

Solution: The domain of $P(a)$ is constrained by the following two facts:

- a cannot be less than 0 .
- b cannot be less than 0 .

From the first fact, we see that the domain of $P(a)$ must begin with " $[0$." Let us express the second fact as a statement about a. Using the formula $b=\frac{1}{2}\left(\frac{300+\pi}{2+2 a}-2\right)$, we see that the second fact can be expressed as:

$$
\begin{aligned}
0 & \leq \frac{1}{2}\left(\frac{300+\pi}{2+2 a}-2\right) \\
2 & \leq \frac{300+\pi}{2+2 a} \\
4+4 a & \leq 300+\pi \\
a & \leq \frac{300+\pi-4}{4} .
\end{aligned}
$$

Therefore, we see that the domain of $P(a)$ must end with " $\left.\frac{300+\pi-4}{4}\right]$." Putting these together, we conclude that the domain of $P(a)$ is $\left[0, \frac{300+\pi-4}{4}\right]$.

