5. [10 points] The graph of the function $f(x)$ is shown below.

Note that $f(x)$ is linear on the interval $(-3,1)$.

a. [6 points] The function $g(x)$ is given by the equation

$$
g(x)= \begin{cases}e^{p x} & x \leq 0 \\ C f(x) & x>0\end{cases}
$$

where C and p are constants and f is as above. Find one pair of exact values for C and p such that $g(x)$ is differentiable, or write nONE if there are none. Be sure your work is clear.

Solution: We first must ensure that $g(x)$ is continuous at $x=0$. We see that $\lim _{x \rightarrow 0^{-}} g(x)=$ $e^{p \cdot 0}$ and $\lim _{x \rightarrow 0^{+}} g(x)=C f(0)$, and so we solve:

$$
\begin{aligned}
e^{p \cdot 0} & =C f(0) \\
1 & =C \cdot 2 \\
\frac{1}{2} & =C .
\end{aligned}
$$

We must next ensure that $\lim _{x \rightarrow 0^{-}} g^{\prime}(x)=\lim _{x \rightarrow 0^{+}} g^{\prime}(x)$. We see that $\lim _{x \rightarrow 0^{-}} g^{\prime}(x)=p e^{p .0}$ and $\lim _{x \rightarrow 0^{+}} g^{\prime}(x)=C f^{\prime}(0)$. Since $f(x)$ is linear on $(-3,1)$, we compute its slope on the interval $[-3,0]$ to find that $f^{\prime}(0)=(2-1) /(0-(-3))=\frac{1}{3}$. We now solve

$$
\begin{aligned}
p e^{p \cdot 0} & =C f^{\prime}(0) \\
p \cdot 1 & =\frac{1}{2} \cdot \frac{1}{3} \\
p & =\frac{1}{6} .
\end{aligned}
$$

We conclude that $C=\frac{1}{2}, p=\frac{1}{6}$.

Part of the graph of the function $h(x)$ is shown below.

Note that $h(4)=-\frac{\sqrt{2}}{3}$.
b. [2 points] Complete the following sentence.

Because the function $h(x)$ satisfies the hypotheses of the mean value theorem on the interval $[2,4]$, there must be some point c with $2 \leq c \leq 4$ such that...

Solution: $\ldots h^{\prime}(c)=\frac{h(4)-h(2)}{4-2}=-\frac{\sqrt{2}}{6}$.
c. [2 points] On which of the following intervals does $h(x)$ satisfy the hypotheses of the mean value theorem? List all correct answers, or write NONE.

$$
[-1,0] \quad[0,3] \quad[1,4]
$$

Solution: The hypotheses of the mean value theorem for a function $h(x)$ on an interval $[a, b]$ are:

- Our function $h(x)$ is continuous on the closed interval $[a, b]$.
- Our function $h(x)$ is differentiable on the open interval (a, b).
-These are true for $h(x)$ on $[-1,0]$ because $h(x)$ is constant on this interval.
-These are not true for $h(x)$ on $[0,3]$ because we see from the graph that $h(x)$ is not differentiable at $x=1$, which is inside the open interval $(0,3)$.
-These are true for $h(x)$ on $[1,4]$, because we see from the graph that $h(x)$ is continuous on this interval, and the only point at which $h(x)$ is not differentiable is $x=1$, which is not inside the open interval $(1,4)$.
-We conclude that $h(x)$ satisfies the hypotheses of the mean value theorem on $[-1,0]$ and $[1,4]$.

