7. [4 points] A curve \mathcal{C} gives y as an implicit function of x and satisfies

$$
\frac{d y}{d x}=\frac{2 x y}{3 y^{2}-x^{2}} \quad \text { which can be factored and rewritten as } \quad \frac{d y}{d x}=\frac{2 x y}{(\sqrt{3} y-x)(\sqrt{3} y+x)} .
$$

One of the following graphs is the graph of the curve \mathcal{C}. Write the letter corresponding to that graph.
Hint: Look for horizontal and vertical tangent lines.
A.

B.

C.

D.

Solution: The formula $\frac{d y}{d x}=\frac{2 x y}{(\sqrt{3} y-x)(\sqrt{3} y+x)}$ tells us that \mathcal{C} has a horizontal tangent line only when $x=0$ or $y=0$, and \mathcal{C} has a vertical tangent line only when $x=\sqrt{3} y$ or $x=-\sqrt{3} y$.

- Option A has horizontal tangent lines when neither $x=0$ nor $y=0$, and so cannot be the graph of \mathcal{C}.
- Option B has tangent lines that are not horizontal when $y=0$, and so cannot be the graph of \mathcal{C}.
- The equations $x=\sqrt{3} y$ and $x=-\sqrt{3} y$ are equations for lines of slope $1 / \sqrt{3}$ and $-1 / \sqrt{3}$ passing through the origin. The graph of \mathcal{C} therefore must have a vertical tangent line whenever it intersects one of these lines. Option C passes through the y-axis, and also has the x-axis as a horizontal asymptote. Therefore Option C must pass through every non-horizontal line, and in particular, the two lines we have just described. But Option C has no vertical tangent lines, and so we conclude it cannot be the graph of \mathcal{C}.
- We have eliminated every other option, and so we conclude that Option D is the graph of \mathcal{C}.

