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8. [11 points] Suppose J(x) is a continuous function defined for all real numbers x. The derivative

and second derivative of J(x) are given by

J ′(x) =
x2(x− 1)

3
√
x+ 4

and J ′′(x) =
x(8x2 + 31x− 24)

3
(

3
√
x+ 4

)4
.

a. [2 points] Find the x-coordinates of all critical points of J(x). If there are none, write none.

Solution: The critical points of J(x) occur when J ′(x) = 0 or J ′(x) does not exist. We see
that J ′(x) = 0 when x = 0 and x = 1, and we see that J ′(x) does not exist when x = −4. We

conclude that the critical points of J(x) occur at x = 0, 1, and −4 .

Throughout parts b. and c. below, you must use calculus to find and justify your answers. Make
sure your final conclusions are clear, and that you show enough evidence to justify those conclusions.

b. [5 points] Find the x-coordinates of

i. all local minima of J(x) and

ii. all local maxima of J(x).

If there are none of a particular type, write none.

Solution: We use the First Derivative Test. Observe that x2 is always positive unless x = 0.

• On the interval (−∞,−4), we see that x − 1 is negative and 3
√
x+ 4 is also negative,

and so J ′(x) is positive on this interval.

• On the interval (−4, 0), we see that x − 1 is negative and 3
√
x+ 4 is positive, and so

J ′(x) is negative on this interval.

• On the interval (0, 1), we see that x−1 is negative and 3
√
x+ 4 is positive, and so J ′(x)

is negative on this interval.

• On the interval (1,∞), we see that x− 1 is positive and 3
√
x+ 4 is also positive, and so

J ′(x) is positive on this interval.

Since J ′(x) is positive to the left of x = −4 and negative to the right, we see J ′(x) has a

local maximum at x = −4. Since J ′(x) is negative to the left of x = 0 and negative to the right,
we see that J ′(x) has neither a local maximum nor minimum at x = 0. Since J ′(x) is negative

to the left of x = 1 and positive to the right, we see that J ′(x) has a local minimum at x = 1.
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c. [4 points] The polynomial 8x2 + 31x − 24 (from the numerator of J ′′(x)) has two zeroes a and
b, where a ≈ −4.54 and b ≈ 0.66. How many inflection points does the function J(x) have?
Remember to justify your answer. Hint: What does the graph of 8x2 + 31x− 24 look like?

Solution: The inflection points of J(x) can only occur when J ′′(x) = 0 or J ′′(x) does not
exist. We see that J ′′(x) = 0 when x = 0, a, and b, and we see that J ′′(x) does not exist when
x = −4. We consider the signs of J ′′(x) on the intervals between these points. Observe that
(

3
√
x+ 4

)4
is always positive unless x = −4. Also observe that the graph of 8x2 + 31x− 24 is

a concave up parabola, which tells us that 8x2 + 31x− 24 is only negative when a < x < b.

• On the interval (−∞, a), we see that x is negative and 8x2 + 31x− 24 is positive, and
so J ′′(x) is negative.

• On the interval (a,−4), we see that x is negative and 8x2 + 31x − 24 is also negative,
and so J ′′(x) is positive.

• On the interval (−4, 0), we see that x is negative and 8x2 + 31x − 24 is also negative,
and so J ′′(x) is positive.

• On the interval (0, b), we see that x is positive and 8x2 + 31x− 24 is negative, and so
J ′′(x) is negative.

• On the interval (b,∞), we see that x is positive and 8x2+31x− 24 is also positive, and
so J ′′(x) is positive.

We observe that J ′′(x) changes sign only at x = a, 0, and b, and so we conclude that J ′′(x) has

3 inflection points.

9. [16 points] We consider a function f(x) defined for all real numbers. We suppose that the first and
second derivatives f ′(x) and f ′′(x) are also defined for all real numbers. Below we show the graph of
the second derivative of f . You may assume that f ′′(x) is decreasing outside of the region shown.
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a. [3 points] Find or estimate the x-coordinates of all inflection points of f(x). If there are none,
write none.

Solution: The inflection points of f(x) occur when f ′′(x) changes sign. Therefore the x-

coordinates of the inflection points of f(x) are x = −1.5, 0, and 1.5.

b. [3 points] Find or estimate the x-coordinates of all inflection points of f ′(x). If there are none,
write none.
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