c. [4 points] The polynomial $8 x^{2}+31 x-24$ (from the numerator of $J^{\prime \prime}(x)$) has two zeroes a and b, where $a \approx-4.54$ and $b \approx 0.66$. How many inflection points does the function $J(x)$ have? Remember to justify your answer. Hint: What does the graph of $8 x^{2}+31 x-24$ look like?

Solution: The inflection points of $J(x)$ can only occur when $J^{\prime \prime}(x)=0$ or $J^{\prime \prime}(x)$ does not exist. We see that $J^{\prime \prime}(x)=0$ when $x=0, a$, and b, and we see that $J^{\prime \prime}(x)$ does not exist when $x=-4$. We consider the signs of $J^{\prime \prime}(x)$ on the intervals between these points. Observe that $(\sqrt[3]{x+4})^{4}$ is always positive unless $x=-4$. Also observe that the graph of $8 x^{2}+31 x-24$ is a concave up parabola, which tells us that $8 x^{2}+31 x-24$ is only negative when $a<x<b$.

- On the interval $(-\infty, a)$, we see that x is negative and $8 x^{2}+31 x-24$ is positive, and so $J^{\prime \prime}(x)$ is negative.
- On the interval $(a,-4)$, we see that x is negative and $8 x^{2}+31 x-24$ is also negative, and so $J^{\prime \prime}(x)$ is positive.
- On the interval $(-4,0)$, we see that x is negative and $8 x^{2}+31 x-24$ is also negative, and so $J^{\prime \prime}(x)$ is positive.
- On the interval $(0, b)$, we see that x is positive and $8 x^{2}+31 x-24$ is negative, and so $J^{\prime \prime}(x)$ is negative.
- On the interval (b, ∞), we see that x is positive and $8 x^{2}+31 x-24$ is also positive, and so $J^{\prime \prime}(x)$ is positive.
We observe that $J^{\prime \prime}(x)$ changes sign only at $x=a, 0$, and b, and so we conclude that $J^{\prime \prime}(x)$ has 3 inflection points.

9. [16 points] We consider a function $f(x)$ defined for all real numbers. We suppose that the first and second derivatives $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are also defined for all real numbers. Below we show the graph of the second derivative of f. You may assume that $f^{\prime \prime}(x)$ is decreasing outside of the region shown.

a. [3 points] Find or estimate the x-coordinates of all inflection points of $f(x)$. If there are none, write NONE.
Solution: The inflection points of $f(x)$ occur when $f^{\prime \prime}(x)$ changes sign. Therefore the x coordinates of the inflection points of $f(x)$ are $x=-1.5,0$, and 1.5.
b. [3 points] Find or estimate the x-coordinates of all inflection points of $f^{\prime}(x)$. If there are none, write NONE.

Solution: The inflection points of $f^{\prime}(x)$ occur when $f^{\prime \prime \prime}(x)$ changes sign. Since $f^{\prime \prime \prime}(x)$ is the first derivative of $f^{\prime \prime}(x)$, this means that we are looking for points where the graph changes from increasing to decreasing, or vice versa. These occur at $x \approx-0.75$ and $x \approx 0.9$.
c. [1 point] Suppose that $f^{\prime}(0)=5$. How many critical points does f have?

Solution: By looking at the graph, we see that $f^{\prime}(x)$ is increasing on the intervals $(-\infty,-1.5)$ and $(0,1.5)$, and is decreasing on the intervals $(-1.5,0)$ and $(1.5,0)$. This tells us that $f^{\prime}(x)$ has a local minimum at $x=0$ and local maxima at $x=-1.5$ and $x=1.5$. Since $f^{\prime}(0)=5$, this means that $f^{\prime}(x)$ cannot be equal to 0 on the interval $(-1.5,1.5)$, because it is always positive on this interval.

Since $f^{\prime \prime}(x)$ is decreasing and positive on the interval $(-\infty,-1.5)$, we see that $f^{\prime}(x)$ is increasing and concave down on this interval. Therefore $f^{\prime}(x)$ diverges to $-\infty$ as $x \rightarrow-\infty$. Since $f^{\prime}(-1.5)$ is positive, we conclude that $f^{\prime}(x)$ must cross the x-axis once on the interval $(-\infty,-1.5)$. Similarly, since $f^{\prime \prime}(x)$ is decreasing and negative on the interval $(1.5, \infty)$, we see that $f^{\prime}(x)$ is decreasing and concave down on this interval. Therefore $f^{\prime}(x)$ diverges to $-\infty$ as $x \rightarrow \infty$. Since $f^{\prime}(1.5)$ is positive, we conclude that $f^{\prime}(x)$ must cross the x-axis once on the interval $(1.5, \infty)$.

We conclude that $f^{\prime}(x)$ is equal to 0 at exactly two x-values, and so the function f has 2 critical points.

For parts d.-f. below, suppose that $f^{\prime}(1)=6.8$ and $f(1)=4$.
d. [4 points] Let $Q(x)$ be the quadratic approximation of $f(x)$ near $x=1$. Find a formula for $Q(x)$.
Solution: We have

$$
\begin{aligned}
Q(x) & =\frac{f^{\prime \prime}(1)}{2}(x-1)^{2}+f^{\prime}(1)(x-1)+f(1) \\
& =\frac{3}{2}(x-1)^{2}+6.8(x-1)+4 .
\end{aligned}
$$

e. [2 points] Is the linear approximation of $f(x)$ near $x=1$ an overestimate or an underestimate of $f(x)$ for values of x near 1? Explain your reasoning.
Solution: Since $f^{\prime \prime}(1)>0$, it follows that the linear approximation of $f(x)$ near $x=1$ is an underestimate of $f(x)$ for values of x near 1 .
f. [3 points] Let $L(x)$ be the linear approximation of $f^{\prime}(x)$ (the derivative of f) near $x=1$. Find a formula for $L(x)$.
Solution: We have

$$
\begin{aligned}
L(x) & =f^{\prime \prime}(1)(x-1)+f^{\prime}(1) \\
& =3(x-1)+6.8 .
\end{aligned}
$$

