1. [9 points] A portion of a graph of the function r(x), whose domain is  $(-\infty, \infty)$  is shown below to the left. The function r(x) is linear on the intervals [-6, -4] and [-4, -2]. A table of values for a differentiable and invertible function q(x) and its derivative q'(x) are shown below to the right.



| x     | -3  | -2  | -1 | 0 | 1  | 2  | 3   |
|-------|-----|-----|----|---|----|----|-----|
| q(x)  | 14  | 10  | 3  | 2 | -5 | -6 | -15 |
| q'(x) | -10 | -12 | -4 | 0 | -2 | -5 | -6  |

Find the <u>exact</u> values of the quantities in parts **a.-d.**, whenever possible. Write NEI if there is not enough information to do so, or write DNE if the value does not exist. Your answers should not include the letters q or r but you do not need to simplify your numerical answers. Show your work.

**a**. [1 point] Find r'(-4).

**b**. [2 points] Find  $(q^{-1})'(-6)$ .

**Answer:**  $(q^{-1})'(-6) =$  \_\_\_\_\_

**Answer:** r'(-4) = \_\_\_\_\_

c. [3 points] Let  $J(x) = e^{q(x)}$ . Find J'(1).

**Answer:** J'(1) = \_\_\_\_\_

**d**. [3 points] Let D(x) = r(x)q(2x+4). Find D'(-3).

**Answer:** D'(-3) = \_\_\_\_\_

© 2022 Univ of Michigan Dept of Mathematics Creative Commons BY-NC-SA 4.0 International License