1. [9 points] A portion of a graph of the function $r(x)$, whose domain is $(-\infty, \infty)$ is shown below to the left. The function $r(x)$ is linear on the intervals $[-6,-4]$ and $[-4,-2]$. A table of values for a differentiable and invertible function $q(x)$ and its derivative $q^{\prime}(x)$ are shown below to the right.

x	-3	-2	-1	0	1	2	3
$q(x)$	14	10	3	2	-5	-6	-15
$q^{\prime}(x)$	-10	-12	-4	0	-2	-5	-6

Find the exact values of the quantities in parts a.-d., whenever possible. Write net if there is not enough information to do so, or write DNE if the value does not exist. Your answers should not include the letters q or r but you do not need to simplify your numerical answers. Show your work.
a. $[1$ point $]$ Find $r^{\prime}(-4)$.

Answer: $\quad r^{\prime}(-4)=$ \qquad
b. [2 points] Find $\left(q^{-1}\right)^{\prime}(-6)$.

Answer: $\left(q^{-1}\right)^{\prime}(-6)=$ \qquad
c. [3 points] Let $J(x)=e^{q(x)}$. Find $J^{\prime}(1)$.

Answer: $\quad J^{\prime}(1)=$
d. [3 points] Let $D(x)=r(x) q(2 x+4)$. Find $D^{\prime}(-3)$.

Answer: $\quad D^{\prime}(-3)=$ \qquad

