10. [8 points] Some information about the derivative $p^{\prime}(x)$ and the second derivative $p^{\prime \prime}(x)$ of a function $p(x)$ is provided in the table below.

x	-4	-3	-2	-1	0	1	2
$p^{\prime}(x)$	1	0	-2	0	-1	0	2
$p^{\prime \prime}(x)$	-1	0	0	0	0	2	1

Assume that

- $p^{\prime \prime}(x)$ is defined and continuous on the interval $(-\infty, \infty)$ and
- the values of both $p^{\prime}(x)$ and $p^{\prime \prime}(x)$ are strictly positive or strictly negative between consecutive table entries.
For each question below, circle all correct choices. You do not need to justify your answers.
a. [2 points] On which of the following intervals must $p(x)$ be always concave up?

$$
\begin{array}{lcc}
-4<x<-3 & -3<x<-2 & -2<x<-1 \\
-1<x<0 & 0<x<1 & 1<x<2
\end{array}
$$

b. [2 points] At which of the following values of x must $p(x)$ have a local minimum?

$$
x=-3 \quad x=-2 \quad x=-1 \quad x=0 \quad x=1 \quad \text { NONE OF THESE }
$$

c. [2 points] At which of the following values of x must $p(x)$ have an inflection point?

$$
x=-3 \quad x=-2 \quad x=-1 \quad x=0 \quad x=1 \quad \text { NONE OF THESE }
$$

d. [2 points] At which value(s) of x does $p(x)$ attain a global maximum on the interval $[-4,0]$?

$$
x=-4 \quad x=-3 \quad x=-2 \quad x=-1 \quad x=0
$$

