10. [8 points] Some information about the derivative p'(x) and the second derivative p''(x) of a function p(x) is provided in the table below.

x	-4	-3	-2	-1	0	1	2
p'(x)	1	0	-2	0	-1	0	2
p''(x)	-1	0	0	0	0	2	1

Assume that

- p''(x) is defined and continuous on the interval $(-\infty, \infty)$ and
- the values of both p'(x) and p''(x) are strictly positive or strictly negative between consecutive table entries.

For each question below, circle \underline{all} correct choices. You do not need to justify your answers.

a. [2 points] On which of the following intervals must p(x) be always concave up?

-4 < x < -3	-3 < x < -2	-2 < x <	-1
-1 < x < 0	0 < x < 1	1 < x < 2	NONE OF THESE

b. [2 points] At which of the following values of x must p(x) have a local minimum?

x = -3 x = -2 x = -1 x = 0 x = 1 None of these

c. [2 points] At which of the following values of x must p(x) have an inflection point?

x = -3 x = -2 x = -1 x = 0 x = 1 None of these

d. [2 points] At which value(s) of x does p(x) attain a global maximum on the interval [-4, 0]?

x = -4 x = -3 x = -2 x = -1 x = 0None of these cannot be determined

© 2022 Univ of Michigan Dept of Mathematics Creative Commons BY-NC-SA 4.0 International License