2. [7 points] A table of values for a differentiable and invertible function $q(x)$ and its derivative $q^{\prime}(x)$ are shown below. Note that this is the same function q as on the previous page. However, you do not need your work or answers from the previous page to do this problem.

x	-3	-2	-1	0	1	2	3
$q(x)$	14	10	3	2	-5	-6	-15
$q^{\prime}(x)$	-10	-12	-4	0	-2	-5	-6

Let \mathcal{C} be the curve defined implicitly by the equation

$$
x y^{2}+\sin (2 \pi q(x))=6 e^{y-4}+10 .
$$

a. [1 point] Exactly one of the following points (x, y) lies on the curve \mathcal{C}. Circle that one point.

$$
\begin{array}{llll}
(-2,1) & (1,4) & (0,4) & (0,10)
\end{array}
$$

b. [6 points] Find an equation for the tangent line to the curve \mathcal{C} at the point you chose in part a. Make sure to show your work clearly.

Answer: $y=$ \qquad

