5. [15 points]
Shown on the right is the graph of \(h'(x) \), the derivative of a function \(h(x) \). Assume that \(h \) is continuous on its entire domain \((-\infty, \infty)\).

Use this graph to answer the questions below.

You may also use the fact that \(h(-4) = 5 \).

\[\begin{array}{c}
-4 & -3 & -2 & -1 & 1 & 2 & 3 & 4 \\
\hline
y & 2 & 1 & 1 & 2 & 3 & 2 & 1
\end{array} \]

a. [3 points] Find the linear approximation \(L(x) \) of \(h(x) \) near \(x = -4 \), and use your formula to approximate \(h(-3.9) \).

Answer: \(L(x) = \) \[\text{ and } \] \(h(-3.9) \approx \) \[\text{ } \]

b. [2 points] Is the estimate of \(h(-3.9) \) in part a. an overestimate or underestimate of the actual value, or is there not enough information to decide? Briefly explain your reasoning.

Circle one: OVERESTIMATE UNDERESTIMATE NOT ENOUGH INFORMATION

Brief explanation:

For each question below, circle **all** correct choices. You do not need to justify your answers.

For each question below, circle **all** correct choices. You do not need to justify your answers.

c. [2 points] At which of the following values of \(x \) does \(h(x) \) have a critical point?

\[x = -2 \quad x = -1 \quad x = 0 \quad x = 2 \quad x = 3 \quad \text{NONE OF THESE} \]

d. [2 points] At which of the following values of \(x \) does \(h(x) \) have a local maximum?

\[x = -1 \quad x = 0 \quad x = 1 \quad x = 2 \quad x = 3 \quad \text{NONE OF THESE} \]

e. [2 points] At which of the following values of \(x \) does \(h(x) \) have an inflection point?

\[x = -3 \quad x = -2 \quad x = -1 \quad x = 0 \quad x = 2 \quad \text{NONE OF THESE} \]

f. [2 points] If \(g(x) = h'(x) \), on which of the following interval(s) does \(g(x) \) satisfy the hypotheses of the Mean Value Theorem?

\[[-4, -1] \quad [-1, 2] \quad [1, 3] \quad [2, 4] \quad \text{NONE OF THESE} \]

g. [2 points] If \(g(x) = h'(x) \), on which of the following interval(s) does \(g(x) \) satisfy the conclusion of the Mean Value Theorem?

\[[-4, -1] \quad [-1, 2] \quad [1, 3] \quad [2, 4] \quad \text{NONE OF THESE} \]