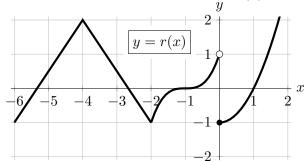
1. [9 points] A portion of a graph of the function r(x), whose domain is $(-\infty, \infty)$ is shown below to the left. The function r(x) is linear on the intervals [-6, -4] and [-4, -2]. A table of values for a differentiable and invertible function q(x) and its derivative q'(x) are shown below to the right.



x	-3	-2	-1	0	1	2	3
q(x)	14	10	3	2	-5	-6	-15
q'(x)	-10	-12	-4	0	-2	-5	-6

Find the <u>exact</u> values of the quantities in parts **a.-d.**, whenever possible. Write NEI if there is not enough information to do so, or write DNE if the value does not exist. Your answers should not include the letters q or r but you do not need to simplify your numerical answers. Show your work.

a. [1 point] Find r'(-4).

Solution: The graph of r(x) has a sharp corner at x = -4 so r'(-4) does not exist. (The slope from the right is 1.5 while the slope from the left is -1.5.)

Answer: r'(-4) = **DNE**

b. [2 points] Find $(q^{-1})'(-6)$.

Solution: We have

$$(q^{-1})'(x) = \frac{1}{q'(q^{-1}(x))}$$
$$(q^{-1})'(-6) = \frac{1}{q'(q^{-1}(-6))} = \frac{1}{q'(2)} = \frac{1}{-5} = -\frac{1}{5}.$$

Answer: $(q^{-1})'(-6) = \underline{\qquad -1/5}$

c. [3 points] Let $J(x) = e^{q(x)}$. Find J'(1).

Solution: Applying the chain rule, we find

$$J'(x) = e^{q(x)}q'(x)$$

so

SO

$$J'(1) = e^{q(1)}q'(1) = e^{-5}(-2) = -2e^{-5}.$$

Answer: $J'(1) = \underline{\qquad -2e^{-5}}$

d. [3 points] Let D(x) = r(x)q(2x+4). Find D'(-3).

Solution: Applying the product and chain rules, we find

$$D'(x) = r'(x)q(2x+4) + r(x)q'(2x+4)(2)$$

 \mathbf{SO}

$$D'(-3) = r'(-3)q(-2) + r(-3)q'(-2)(2) = -\frac{3}{2} \cdot 10 + \frac{1}{2} \cdot (-12) \cdot 2 = -15 - 12 = -27.$$

Answer: $D'(-3) = \underline{\qquad -27}$