2. [7 points] A table of values for a differentiable and invertible function $q(x)$ and its derivative $q^{\prime}(x)$ are shown below. Note that this is the same function q as on the previous page. However, you do not need your work or answers from the previous page to do this problem.

x	-3	-2	-1	0	1	2	3
$q(x)$	14	10	3	2	-5	-6	-15
$q^{\prime}(x)$	-10	-12	-4	0	-2	-5	-6

Let \mathcal{C} be the curve defined implicitly by the equation

$$
x y^{2}+\sin (2 \pi q(x))=6 e^{y-4}+10
$$

a. [1 point] Exactly one of the following points (x, y) lies on the curve \mathcal{C}. Circle that one point.

$$
(1,4)
$$

$$
\begin{equation*}
(0,4) \tag{-2,1}
\end{equation*}
$$

b. [6 points] Find an equation for the tangent line to the curve \mathcal{C} at the point you chose in part a. Make sure to show your work clearly.

Solution: The slope of this tangent line is equal to $\left.\frac{d y}{d x}\right|_{(x, y)=(1,4)}$. To compute this, we first take the derivative with respect to x of both sides of the given equation for \mathcal{C} and solve for $\frac{d y}{d x}$.

$$
\begin{aligned}
\frac{d}{d x}\left(x y^{2}+\sin (2 \pi q(x))\right) & =\frac{d}{d x}\left(6 e^{y-4}+10\right) \\
y^{2}+2 x y \frac{d y}{d x}+2 \pi \cos (2 \pi q(x)) q^{\prime}(x) & =6 e^{y-4} \frac{d y}{d x} \\
\left(2 x y-6 e^{y-4}\right) \frac{d y}{d x} & =-y^{2}-2 \pi \cos (2 \pi q(x)) q^{\prime}(x) \\
\frac{d y}{d x} & =\frac{-y^{2}-2 \pi \cos (2 \pi q(x)) q^{\prime}(x)}{2 x y-6 e^{y-4}} .
\end{aligned}
$$

So at the point $(1,4)$,

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{(x, y)=(1,4)} & =\frac{-y^{2}-2 \pi \cos (2 \pi q(x)) q^{\prime}(x)}{2 x y-6 e^{y-4}} \\
& =\frac{-(4)^{2}-2 \pi \cos (2 \pi q(1)) q^{\prime}(1)}{2(1)(4)-6 e^{4-4}} \\
& =\frac{-16-2 \pi \cos (-10 \pi)(-2)}{8-6} \\
& =\frac{-16+4 \pi}{2} \\
& =2 \pi-8
\end{aligned}
$$

Therefore, an equation for the tangent line to the curve \mathcal{C} at the point $(1,4)$ is

$$
y=4+(2 \pi-8)(x-1)
$$

Answer: $\quad y=\frac{4+(2 \pi-8)(x-1)}{}$

