2. [7 points] A table of values for a differentiable and invertible function \(q(x) \) and its derivative \(q'(x) \) are shown below. Note that this is the same function \(q \) as on the previous page. However, you do not need your work or answers from the previous page to do this problem.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q(x))</td>
<td>14</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>-5</td>
<td>-6</td>
<td>-15</td>
</tr>
<tr>
<td>(q'(x))</td>
<td>-10</td>
<td>-12</td>
<td>-4</td>
<td>0</td>
<td>-2</td>
<td>-5</td>
<td>-6</td>
</tr>
</tbody>
</table>

Let \(C \) be the curve defined implicitly by the equation

\[
xy^2 + \sin(2\pi q(x)) = 6e^{y-4} + 10.
\]

a. [1 point] Exactly one of the following points \((x, y)\) lies on the curve \(C \). Circle that one point.

\((-2, 1)\) \(\boxed{(1, 4)}\) \((0, 4)\) \((0, 10)\)

b. [6 points] Find an equation for the tangent line to the curve \(C \) at the point you chose in part a. Make sure to show your work clearly.

\[
\text{Solution: The slope of this tangent line is equal to } \frac{dy}{dx}\bigg|_{(x,y)=(1,4)}.
\]

To compute this, we first take the derivative with respect to \(x \) of both sides of the given equation for \(C \) and solve for \(\frac{dy}{dx} \).

\[
\frac{d}{dx} (xy^2 + \sin(2\pi q(x))) = \frac{d}{dx} (6e^{y-4} + 10)
\]

\[
y^2 + 2xy \frac{dy}{dx} + 2\pi \cos(2\pi q(x))q'(x) = 6e^{y-4} \frac{dy}{dx}
\]

\[
(2xy - 6e^{y-4}) \frac{dy}{dx} = -y^2 - 2\pi \cos(2\pi q(x))q'(x)
\]

\[
\frac{dy}{dx} = \frac{-y^2 - 2\pi \cos(2\pi q(x))q'(x)}{2xy - 6e^{y-4}}
\]

So at the point \((1, 4)\),

\[
\frac{dy}{dx}\bigg|_{(x,y)=(1,4)} = \frac{-y^2 - 2\pi \cos(2\pi q(x))q'(x)}{2xy - 6e^{y-4}}
\]

\[
= \frac{-(4)^2 - 2\pi \cos(2\pi q(1))q'(1)}{2(1)(4) - 6e^{4-4}}
\]

\[
= \frac{-16 - 2\pi \cos(-10\pi)(-2)}{8 - 6}
\]

\[
= \frac{-16 + 4\pi}{2}
\]

\[
= 2\pi - 8.
\]

Therefore, an equation for the tangent line to the curve \(C \) at the point \((1, 4)\) is

\[
y = 4 + (2\pi - 8)(x - 1)
\]

Answer: \(y = 4 + (2\pi - 8)(x - 1) \)