4. [8 points]

Sunny and Tyrell own an ice cream shop together. They want to sell waffle cones in the usual shape of a cone, as shown on the right. The cost, in dollars, of a waffle cone with radius r inches and height h inches is

$$
\frac{r}{2}\left(\sqrt{h^{2}+r^{2}}\right) .
$$

Sunny and Tyrell want to spend exactly $\$ 5$ on a waffle cone that can fit the most ice cream (i.e has the largest volume).
Note that the volume of a cone of radius r and height h is $\frac{\pi r^{2} h}{3}$.

a. [3 points] Write a formula for h in terms of r if the cone costs $\$ 5$.

Solution: Because Sunny and Tyrell want to spend exactly $\$ 5$ on a waffle cone, we must have $\frac{r}{2}\left(\sqrt{h^{2}+r^{2}}\right)=5$. Solving this equation for h, we find

$$
\begin{aligned}
\sqrt{h^{2}+r^{2}} & =\frac{10}{r} \\
h^{2}+r^{2} & =\frac{100}{r^{2}} \\
h^{2} & =\frac{100}{r^{2}}-r^{2} \\
h & =\sqrt{\frac{100}{r^{2}}-r^{2}} .
\end{aligned}
$$

Answer: $h=\sqrt{\frac{100}{r^{2}}-r^{2}}$
b. [2 points] Write a formula for the function $V(r)$ which gives the volume, in cubic inches, of an ice cream cone that costs $\$ 5$ in terms of r only. Your formula should not include the letter h.
Solution: The volume of the ice cream cone is given by $\frac{\pi r^{2} h}{3}$. Using our answer from part a., we have

$$
V(r)=\frac{\pi r^{2}\left(\sqrt{\frac{100}{r^{2}}-r^{2}}\right)}{3}
$$

$$
\frac{\pi r^{2}\left(\sqrt{\frac{100}{r^{2}}-r^{2}}\right)}{2}
$$

Answer: $\quad V(r)=$ \qquad
c. [3 points] What is the domain of $V(r)$ in the context of this problem?

Solution: Note that r cannot be equal to 0 since then the cost would be 0 rather than $\$ 5$, so we know $r>0$.
Also note that $h^{2} \geq 0$. From part a., we know that $h^{2}=\frac{100}{r^{2}}-r^{2}$, so we have

$$
\begin{aligned}
\frac{100}{r^{2}}-r^{2} & \geq 0 \\
100 & \geq r^{4} \\
10 & \geq\left|r^{2}\right|=r^{2} \\
\sqrt{10} & \geq|r|=r(\text { since } r>0) .
\end{aligned}
$$

Answer:
$(0, \sqrt{10})$ or $(0, \sqrt{10}]$

