5. [15 points]

Shown on the right is the graph of $h^{\prime}(x)$, the derivative of a function $h(x)$. Assume that h is continuous on its entire domain $(-\infty, \infty)$.

Use this graph to answer the questions below.
You may also use the fact that $h(-4)=5$.

a. [3 points] Find the linear approximation $L(x)$ of $h(x)$ near $x=-4$, and use your formula to approximate $h(-3.9)$.
Solution:

$$
L(x)=h(4)+h^{\prime}(4)(x-(-4))=5+2(x+4)
$$

and our linear approximation of $h(-3.9)$ is therefore $h(-3.9) \approx L(-3.9)=5+2(0.1)=5.2$.

Answer: $L(x)=\left[\begin{array}{l}5+2(x+4)\end{array} \quad\right.$ and $h(-3.9) \approx \quad 5+2(0.1)=5.2$
b. [2 points] Is the estimate of $h(-3.9)$ in part a. an overestimate or underestimate of the actual value, or is there not enough information to decide? Briefly explain your reasoning.

Circle one: OVERESTIMATE UNDERESTIMATE NOT ENOUGH INFORMATION

Brief explanation:

Solution: The second derivative is negative (since $h^{\prime}(x)$ is decreasing/the slope of $h^{\prime}(x)$ is negative) on the interval $(-4,-3.9)$ so $h(x)$ is concave down on this interval. Therefore, the tangent line to $y=h(x)$ at $x=-4$ is above the curve $y=h(x)$ at $x=-3.9$ and the resulting linear approximation of $h(-3.9)$ must be an overestimate.

For each question below, circle all correct choices. You do not need to justify your answers.
c. [2 points] At which of the following values of x does $h(x)$ have a critical point?

$$
\begin{array}{llll}
x=-2 & x=-1 & x=0 & x=2
\end{array} \quad x=3 \quad \text { NONE OF THESE }
$$

d. [2 points] At which of the following values of x does $h(x)$ have a local maximum?

$$
\begin{array}{lllll}
x=-1 & x=0 & x=1 & x=2 & x=3
\end{array} \quad \text { NONE OF THESE }
$$

e. [2 points] At which of the following values of x does $h(x)$ have an inflection point?

$$
\begin{array}{llll}
x=-3 & x=-2 & x=-1 & x=0
\end{array} \quad x=2 \quad \text { NONE OF THESE }
$$

f. [2 points] If $g(x)=h^{\prime}(x)$, on which of the following interval(s) does $g(x)$ satisfy the hypotheses of the Mean Value Theorem?

$$
[-4,-1] \quad[-1,2] \quad[1,3] \quad[2,4] \quad \text { NONE OF THESE }
$$

g. [2 points]. If $g(x)=h^{\prime}(x)$, on which of the following interval(s) does $g(x)$ satisfy the conclusion of the Mean Value Theorem?
$[-4,-1]$
$[-1,2]$
$[1,3]$

$$
[2,4]
$$

NONE OF THESE

