7. [5 points] A function $g(x)$ is given by the following formula, where K and M are constants:

$$
g(x)= \begin{cases}K e^{-x+5} & x \leq 5 \\ M+\sqrt{x+4} & x>5\end{cases}
$$

Find all values of K and M so that $g(x)$ is differentiable on $(-\infty, \infty)$. Write none if there are no such values. You do not need to simplify your answers, but show your work clearly.

Solution: When $x<5$, the derivative of $g(x)$ is $g^{\prime}(x)=-K e^{-x+5}$. When $x>5$, the derivative of $g(x)$ is $g^{\prime}(x)=\frac{1}{2 \sqrt{x+4}}$. In order for $g(x)$ to be differentiable on $(-\infty, \infty)$, it must be differentiable at $x=5$. Therefore, we need the slope to the left and right of $x=5$ to match. That is, we need

$$
-K e^{-5+5}=\frac{1}{2 \sqrt{5+4}}
$$

Solving for K, we have

$$
K=-\frac{1}{2(3)}=-\frac{1}{6} .
$$

Requiring that $g(x)$ is differentiable at $x=5$ also requires that $g(x)$ be continuous at $x=5$. Using this and the value of K we found above to solve for M, we have

$$
\begin{aligned}
K e^{-5+5} & =M+\sqrt{5+4} \\
-\frac{1}{6} & =M+3 \\
M & =-\frac{1}{6}-3 \\
M & =-\frac{19}{6} .
\end{aligned}
$$

Answer: $K=\square-\frac{1}{6}$
and $M=\quad-\frac{19}{6}$

