8. [8 points] Prairie dogs named Paws and Dot have been hard at work digging a tunnel. Consider the functions L and C defined as follows:

- $L(w)$ is the length of the tunnel, in feet, when w pounds of dirt have been removed.
- $C(w)$ is the total number of Calories the prairie dogs have burned digging their tunnel when they have removed a total of w pounds of dirt for their tunnel.
The functions $L(w)$ and $C(w)$ are both invertible and differentiable.
a. [4 points] Complete the sentence below to give a practical interpretation of the equation

$$
\left(L^{-1}\right)^{\prime}(10)=24 .
$$

In order to increase the length of the tunnel from 10 feet to 10.25 feet, ...

Solution: the prairie dogs have to remove approximately 6 pounds of dirt.
b. [4 points]
i. Which of the following expressions gives the length, in feet, of the prairie dog tunnel when the prairie dogs have burned a total of x Calories digging? Circle the one correct expression.

$$
C\left(L^{-1}(x)\right) \quad C^{-1}(L(x)) \quad L\left(C^{-1}(x)\right) \quad L^{-1}(C(x))
$$

ii. Use the answer you selected in part i to find an expression for the instantaneous rate of change of the length of the prairie dog tunnel, in feet per calorie, when the prairie dogs have burned a total of 2000 calories digging.
Simplify as much as possible. Note that your final answer may involve the function names $L, L^{-1}, L^{\prime}, C, C^{-1}$, and C^{\prime} but should not involve the function names $\left(L^{-1}\right)^{\prime}$ or $\left(C^{-1}\right)^{\prime}$.

Solution: We are trying to find a simplified expression for $\frac{d}{d x}\left(L\left(C^{-1}(x)\right)\right)$ at $x=2000$. Using the chain rule and the formula for the derivative of the inverse of a function, we have

$$
\begin{aligned}
\frac{d}{d x}\left(L\left(C^{-1}(x)\right)\right) & =L^{\prime}\left(C^{-1}(x)\right) \cdot\left(C^{-1}\right)^{\prime}(x) \\
& =L^{\prime}\left(C^{-1}(x)\right) \cdot \frac{1}{C^{\prime}\left(C^{-1}(x)\right)} .
\end{aligned}
$$

So at $x=2000$, we have

$$
L^{\prime}\left(C^{-1}(2000)\right) \cdot \frac{1}{C^{\prime}\left(C^{-1}(2000)\right)}=\frac{L^{\prime}\left(C^{-1}(2000)\right)}{C^{\prime}\left(C^{-1}(2000)\right)}
$$

Answer: $\quad L^{\prime}\left(C^{-1}(2000)\right) \cdot \frac{1}{C^{\prime}\left(C^{-1}(2000)\right)}=\frac{L^{\prime}\left(C^{-1}(2000)\right)}{C^{\prime}\left(C^{-1}(2000)\right)}$

