1. [10 points]

A portion of the graph of a function $g(x)$ is shown to the right, along with some values of an invertible, differentiable function $h(x)$ and its derivative $h^{\prime}(x)$ below. Note that:

- $g(x)$ is linear on $[3,5]$;
- $g(x)$ has a vertical asymptote at $x=-1$.

x	-2	0	2	4	6
$h(x)$	-1	$-e^{-1}$	0	$\sqrt{2}$	e
$h^{\prime}(x)$	2	1	π	5	$\sqrt{3}$

a. [2 points] Let $M(x)=x^{2} h(x)$. Find $M^{\prime}(-2)$.

Answer: $\quad M^{\prime}(-2)=$
b. [2 points] Let $K(x)=\frac{g(x)}{h(x)}$. Find $K^{\prime}(4)$.

Answer: $\quad K^{\prime}(4)=$ \qquad
c. [2 points] Find $\left(h^{-1}\right)^{\prime}(0)$.

Answer: $\left(h^{-1}\right)^{\prime}(0)=$ \qquad
d. [2 points] On which of the following intervals does $g(x)$ satisfy the hypotheses of the Mean Value Theorem? Circle all correct answers.

$$
[-3,-1] \quad[0,2] \quad[1,3] \quad[2,4] \quad \text { NONE OF THESE }
$$

e. [2 points] On which of the following intervals does $g(x)$ satisfy the conclusion of the Mean Value Theorem? Circle all correct answers.

$$
[-3,-1] \quad[0,2] \quad[1,3] \quad[2,5] \quad \text { NONE OF THESE }
$$

