1. [10 points]

A portion of the graph of a function g(x) is shown to the right, along with some values of an invertible, differentiable function h(x) and its derivative h'(x) below. Note that:

- g(x) is linear on [3, 5];
- g(x) has a vertical asymptote at x = -1.

x	-2	0	2	4	6
h(x)	-1	$-e^{-1}$	0	$\sqrt{2}$	e
h'(x)	2	1	π	5	$\sqrt{3}$

a. [2 points] Let $M(x) = x^2 h(x)$. Find M'(-2).

Answer:
$$M'(-2) =$$

b. [2 points] Let
$$K(x) = \frac{g(x)}{h(x)}$$
. Find $K'(4)$.

Answer:	K'(4) =	
	<hr/>	

c. [2 points] Find $(h^{-1})'(0)$.

Answer: $(h^{-1})'(0) =$ _____

- **d**. [2 points] On which of the following intervals does g(x) satisfy the <u>hypotheses</u> of the Mean Value Theorem? Circle all correct answers.
 - [-3, -1] [0, 2] [1, 3] [2, 4] none of these
- e. [2 points] On which of the following intervals does g(x) satisfy the <u>conclusion</u> of the Mean Value Theorem? Circle all correct answers.

[-3, -1] [0, 2] [1, 3] [2, 5] None of these